Catalysis of ACAT may be completed within the plane of the membrane: a working hypothesis. (65/556)

Two ACAT sharing protein sequence homology near their C termini have been identified. Both proteins may span the endoplasmic reticulum (ER) membrane several times. There is good evidence implicating the role of ACAT1 in macrophage foam cell formation, and ACAT2 in intestinal cholesterol absorption. On the other hand, the functional roles of ACAT1 and ACAT2 in the VLDL or chylomicron assembly process are less clear. It is possible that both enzymes are able to form lipid droplets (which are present in the cytoplasm), and participate in lipoprotein assembly (which occurs in the ER lumen). To link the site of ACAT catalysis with its function, we propose that part of the ACAT catalytic site may reside within the lipid bilayer, allowing catalysis to be completed within the plane of the membrane. Cholesteryl esters (CE) produced in situ may burst into cytoplasmic lipid droplets, carrying phospholipid monolayers as their outer coats. In cells engaged in lipoprotein assembly and secretion, CE in the bilayer may be recognized by the specific protein microsomal triacylglycerol transfer protein (MTP), reaching out from the lumenal side of the membrane. MTP then lipidates the growing apolipoprotein B (apoB) chain with CE and TG during the early stages of apoB lipoprotein assembly.  (+info)

Hawthorn fruit is hypolipidemic in rabbits fed a high cholesterol diet. (66/556)

The present study examined the hypolipidemic activity of hawthorn fruit. New Zealand white rabbits were fed one of three diets, a reference diet with no cholesterol added (NC), a high cholesterol diet (1 g/100 g, HC) and a HC diet supplemented with 2 g/100 g hawthorn fruit powder (HC-H). After 12 wk, serum total cholesterol (TC) and triacylglycerols (TG) were 23.4 and 22.2% lower, respectively, in the hawthorn fruit group compared with the HC rabbits (P < 0.05). Hawthorn supplementation led to 50.6% less cholesterol accumulation in aorta (P < 0.05) and 23-95% greater excretion of neutral and acidic sterols (P < 0.05). Supplementation of hawthorn fruit did not affect the activities of hepatic 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMG-CoA-R) or cholesterol 7alpha-hydroxylase (CH) but it suppressed the activity of intestinal acyl CoA:cholesterol acyltransferase (ACAT, P < 0.05). The results suggest that the mechanism by which hawthorn fruit decreases serum cholesterol involves, at least in part, the inhibition of cholesterol absorption mediated by down-regulation of intestinal ACAT activity.  (+info)

The influence of chylomicron remnants on cholesteryl ester metabolism in cultured rat hepatocytes: comparison of the effects of particles enriched in n-3 or n-6 polyunsaturated fatty acids. (67/556)

The effect of chylomicron remnants derived from fish oil (rich in n-3 polyunsaturated fatty acids) or corn oil (rich in n-6 polyunsaturated fatty acids) on the formation and hydrolysis of cholesteryl esters in cultured rat hepatocytes was investigated. Hepatocytes were incubated with or without fish or corn oil chylomicron remnants (0.25-0.75 mM triacylglycerol), and the activity of acyl-CoA:cholesterol acyltranferase (ACAT) and cholesteryl ester hydrolases in the cytosol (cCEH) and endoplasmic reticulum (erCEH), and the expression of mRNA for ACAT1, ACAT2 and cCEH, and of enzyme protein for erCEH was determined. Addition of either type of remnants to hepatocyte cultures resulted in a decreased activity of erCEH, cCEH (after 6 and 19 h incubation), and of ACAT (after 6 h only). Hepatocyte levels of mRNA encoding ACAT1 and ACAT2 were not affected by either type of chylomicron remnants after 6 h of incubation, while ACAT2 mRNA levels were down-regulated by fish oil remnants as compared with corn oil remnants, and also with control cells in the long term (19 h). In contrast, cCEH mRNA levels were down-regulated by chylomicron remnants derived from corn oil but not fish oil. The expression of erCEH protein was induced in response to the inhibitory effect of both types of remnants on the activity of the enzyme, with corn oil remnants having a significantly greater effect. These findings demonstrate that dietary polyunsaturated fatty acids when delivered to hepatocytes in chylomicron remnants regulate the activity of the enzymes governing the intracellular cholesteryl ester balance, and suggest that dietary n-3 and n-6 polyunsaturated fatty acids or a metabolite thereof have differential effects on the expression of their genes at the mRNA and post-transcriptional levels.  (+info)

Up-regulation of acyl-coenzyme A:cholesterol acyltransferase (ACAT) in nephrotic syndrome. (68/556)

BACKGROUND: We have previously demonstrated that hypercholesterolemia in rats with puromycin-induced nephrotic syndrome (NS) is associated with up-regulation of hepatic 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and relative down-regulation of cholesterol 7alpha-hydroxylase (Ch-7alpha), which represent the rate-limiting steps in cholesterol biosynthesis and catabolism. Expression of HMG-CoA reductase is inhibited and Ch-7alpha is augmented by intracellular free cholesterol, which is avidly esterified by acyl-CoA:cholesterol acyltransferase (ACAT). Therefore, we hypothesized that NS may result in up-regulation of hepatic ACAT. METHODS: Hepatic tissue ACAT mRNA (Northern blot), protein (Western blot) and enzymatic activity were determined in rats with puromycin-induced NS, placebo-treated control rats and Nagase hypoalbuminemic (NAG) rats. RESULTS: The NS group exhibited heavy proteinuria, hypoalbuminemia, normal creatinine clearance, severe hypercholesterolemia and hypertriglyceridemia. Despite severe hypoalbuminemia, NAG rats with inherited hypoalbuminemia exhibited only a mild elevation of plasma cholesterol and triglycerides. Severe hypercholesterolemia in the NS group was coupled with depressed liver tissue free cholesterol concentration and marked increases in hepatic ACAT mRNA, protein and enzymatic activity. In contrast, ACAT mRNA and protein contents of the liver were normal and ACAT activity was mildly elevated in the NAG group. CONCLUSIONS: NS results in marked up-regulation of hepatic ACAT, which is primarily due to proteinuria and not hypoalbuminemia, since the latter alone, as seen in NAG rats, does not significantly impact ACAT expression. Elevated ACAT in NS can contribute to dysregulation of cholesterol biosynthesis and catabolism by limiting the normal cholesterol signaling involved in regulation of these processes.  (+info)

The antioxidant BHT normalizes some oxidative effects of iron + ascorbate on lipid metabolism in Caco-2 cells. (69/556)

We showed recently that iron + ascorbate can impair the assembly of intestinal lipoproteins. However, we could not determine whether these changes were caused by iron + ascorbate-mediated lipid peroxidation per se. We therefore conducted studies to evaluate how antioxidants antagonize the iron + ascorbate-induced derangements. To this end, Caco-2 cells, a reliable experimental intestinal model, were incubated with iron + ascorbate (0.2 mmol/L each) alone or with different concentrations of catalase, mannitol, tocopherol or BHT. Exposing Caco-2 cells to iron + ascorbate increased malondialdehyde levels fourfold (P < 0.0001); this effect was decreased markedly (P < 0.02) in the presence of BHT. Furthermore, BHT normalized the abnormal intracellular events involved in fat absorption, i.e., lipid esterification, cholesterol synthesis and apolipoprotein production. On the other hand, it did not fully restore the secretion of lipids and lipoproteins. Thus, our current data imply that iron + ascorbate-catalyzed lipid peroxidation is partially responsible for the disturbances observed in intestinal lipid transport.  (+info)

Primates highly responsive to dietary cholesterol up-regulate hepatic ACAT2, and less responsive primates do not. (70/556)

The role of liver acyl-CoA:cholesterol acyltransferase 2 (ACAT2), earlier shown to be the principal ACAT enzyme within primate hepatocytes, as a regulator of the hypercholesterolemia induced by dietary cholesterol was studied. At the end of low and high cholesterol diet periods, liver biopsies were taken from cynomolgus monkeys, a species highly responsive to dietary cholesterol, and less responsive African green monkeys. Liver cholesterol and cholesteryl ester concentrations were highest in cynomolgus monkeys fed cholesterol, despite the fact that in order to induce equivalent hypercholesterolemia, dietary cholesterol levels were 50% lower than was fed to green monkeys. Hepatic cholesteryl oleate secretion rate, measured during liver perfusion as an indicator of ACAT activity, was significantly higher in cynomolgus monkeys. Liver microsomal ACAT activity was 2-3-fold higher in cynomolgus monkeys than in green monkeys. The responses of ACAT2 were compared with those of ACAT1 that is found primarily in Kupffer cells. ACAT2 protein mass was significantly correlated to microsomal total ACAT activity in both species; ACAT1 mass was less well correlated. Dietary cholesterol induced a significant 3-fold increase of ACAT2 protein mass in cynomolgus monkeys, a much greater increase than was found for mRNA abundance; neither ACAT2 mRNA nor protein was diet-responsive in green monkeys. In cynomolgus monkeys but not in green monkeys, liver free cholesterol concentrations were elevated when cholesterol was fed and were correlated with ACAT2 protein levels. The data suggest a mechanism whereby the elevation of hepatic free cholesterol concentrations by dietary cholesterol, seen only in cynomolgus monkeys, resulted in higher ACAT2 protein levels in hepatocytes, either through increased production or stabilization of the protein. Regulation of ACAT2 gene transcription was not a factor.  (+info)

17beta-estradiol enhances the flux of cholesterol through the cholesteryl ester cycle in human macrophages. (71/556)

Estrogens have been shown to have many positive effects on the function of arterial wall, and recent evidence suggest that 17beta-estradiol has a direct action in reducing the accumulation of cholesteryl ester in macrophages. The mechanisms underlying the effects of 17beta-estradiol on foam cell formation, however are poorly understood. The aim of this study is to investigate the role of 17beta-estradiol in the regulation of the cholesteryl ester cycle and cholesterol efflux in human macrophages. In addition, the influence of 17beta-estradiol on apolipoprotein E (apoE) and lipoprotein lipase (LDL) secretion by the cells was also tested. Human Monocyte Derived Macrophages (HMDM), matured in the presence or the absence of 17beta-estradiol, were loaded with [3H]-cholesteryl ester-labeled-acetyl LDL (low density lipoprotein) and the efflux of radioactivity into the medium was measured. The effect of 17beta-estradiol on cellular activities of acyl coenzyme A: cholesterol acyl transferase (ACAT), and both neutral and acid cholesteryl ester hydrolase (CEH) and the secretion of apoE and LDL into the medium, were also studied. The results indicate that 17beta-estradiol induces an increase in the amount of labeled cholesterol released from the cells and, the data obtained from the measurements of ACAT and CEH activities showed that, in estrogen-treated HMDM, the cholesteryl ester cycle favors the hydrolysis of lipoprotein cholesterol by CEH in comparison with its acylation by ACAT. In particular, for the first time a strong enhancement of neutral and acid CEH in human macrophages by 17beta-estradiol, was demonstrated. ApoE and LDL secretion increased during the maturation of monocytes to macrophages, and was not modified by 17beta-estradiol. In contrast, loading the cells with cholesterol by incubation in the presence of acetylated or oxidized LDL produced an increase in the levels of apoE secreted by both estrogen-treated and control macrophages. The activity of LPL found in the cell medium, on the other hand, in lipid loaded cells tended to be increased only in estrogen treated macrophages, suggesting that the effects of estrogen on unloaded macrophages are different from those produced on lipid-loaded macrophages. On the whole, the present findings suggest that one of the mechanisms by which 17beta-estradiol acts to reduce cholesterol accumulation in macrophages is by increasing reverse cholesterol transport through the enhancement of the cholesteryl ester cycle, so that the generation of intracellular unesterified cholesterol for excretion from the cells is favored.  (+info)

Macrophage plasma membrane cholesterol contributes to Brucella abortus infection of mice. (72/556)

Brucella abortus is a facultative intracellular bacterium capable of surviving inside macrophages. Intracellular replication of B. abortus requires the VirB complex, which is highly similar to conjugative DNA transfer systems. In this study, we show that plasma membrane cholesterol of macrophages is required for the VirB-dependent internalization of B. abortus and also contributes to the establishment of bacterial infection in mice. The internalization of B. abortus was accelerated by treating macrophages with acetylated low-density lipoprotein (acLDL). Treatment of acyl coenzyme A:cholesterol acyltransferase inhibitor, HL-004, to macrophages preloaded with acLDL accelerated the internalization of B. abortus. Ketoconazole, which inhibits cholesterol transport from lysosomes to the cell surface, inhibited the internalization and intracellular replication of B. abortus in macrophages. The Niemann-Pick C1 gene (NPC1), the gene for Niemann-Pick type C disease, characterized by an accumulation of cholesterol in most tissues, promoted B. abortus infection. NPC1-deficient mice were resistant to the bacterial infection. Molecules associated with cholesterol-rich microdomains, "lipid rafts," accumulate in intracellular vesicles of macrophages isolated from NPC1-deficient mice, and the macrophages yielded no intracellular replication of B. abortus. Thus, trafficking of cholesterol-associated microdomains controlled by NPC1 is critical for the establishment of B. abortus infection.  (+info)