Tandem repeat of a transcriptional enhancer upstream of the sterol 14alpha-demethylase gene (CYP51) in Penicillium digitatum. (17/180)

We investigated the mechanism of resistance to demethylation inhibitors (DMI) in Penicillium digitatum by isolating the CYP51 gene, which encodes the target enzyme (P450(14DM)) of DMI, from three DMI-resistant and three DMI-sensitive strains. The structural genes of all six strains were identical, but in the promoter region, a unique 126-bp sequence was tandemly repeated five times in the DMI-resistant strains and was present only once in the DMI-sensitive strains. Constitutive expression of CYP51 in the resistant strains was about 100-fold higher than that in the sensitive strains. We introduced CYP51, including the promoter region, from a DMI-resistant strain into a DMI-sensitive strain, which rendered the transformants DMI resistant and increased CYP51 expression. We also found that if the number of copies of the repeat was reduced to two, resistance and CYP51 expression also decreased. These results indicate that the 126-bp unit acts as a transcriptional enhancer and that a tandem repeat of the unit enhances CYP51 expression, resulting in DMI resistance. This is a new fungicide resistance mechanism for filamentous fungi.  (+info)

Estimation of minimum sterol 14alpha-demethylation-inhibitory concentration of azoles in Candida yeasts using acetate-mediated growth inhibition: potential utility in susceptibility testing. (18/180)

We have recently shown that 14alpha-demethylation-deficient cells of Candida albicans are subject to growth arrest by 0.24 M acetate in a yeast extract-peptone-glucose medium and that the minimum concentration of an azole antifungal agent required for total inhibition of sterol 14alpha-demethylation (MDIC for minimum demethylation-inhibitory concentration) is practically identical to its MIC determined in the acetate-supplemented medium (O. Shimokawa and H. Nakayama, Antimicrob. Agents Chemother. 43:100-105, 1999). In the present study we estimated the MDICs of three different azoles (fluconazole, ketoconazole, and itraconazole) for strains of various Candida species using this method and compared them with the MICs determined in the corresponding acetate-free medium. The results demonstrated that the test strains were divided into two classes. One class of strains was characterized by tolerance to 14alpha-demethylation deficiency (MIC > MDIC) and consisted of strains of C. albicans, C. guilliermondii, C. kefyr, and C. tropicalis. The other class was intolerant to 14alpha-demethylation deficiency (MIC approximately MDIC) and comprised strains of C. glabrata, C. krusei, and C. parapsilosis. We also showed that replacement of the yeast extract-peptone-glucose medium with RPMI 1640 medium did not affect the results substantially. Furthermore, the 80% inhibitory concentration (IC(80)) in RPMI 1640 medium, recommended as a substitute for the conventional MIC in susceptibility testing, was found to be close to the MDIC.  (+info)

Lanosterol 14alpha-demethylase (CYP51), NADPH-cytochrome P450 reductase and squalene synthase in spermatogenesis: late spermatids of the rat express proteins needed to synthesize follicular fluid meiosis activating sterol. (19/180)

Lanosterol 14alpha-demethylase (CYP51) is a cytochrome P450 enzyme involved primarily in cholesterol biosynthesis. CYP51 in the presence of NADPH-cytochrome P450 reductase converts lanosterol to follicular fluid meiosis activating sterol (FF-MAS), an intermediate of cholesterol biosynthesis which accumulates in gonads and has an additional function as oocyte meiosis-activating substance. This work shows for the first time that cholesterogenic enzymes are highly expressed only in distinct stages of spermatogenesis. CYP51, NADPH-P450 reductase (the electron transferring enzyme needed for CYP51 activity) and squalene synthase (an enzyme preceding CYP51 in the pathway) proteins have been studied. CYP51 was detected in step 3-19 spermatids, with large amounts in the cytoplasm/residual bodies of step 19 spermatids, where P450 reductase was also observed. Squalene synthase was immunodetected in step 2-15 spermatids of the rat, indicating that squalene synthase and CYP51 proteins are not equally expressed in same stages of spermatogenesis. Discordant expression of cholesterogenic genes may be a more general mechanism leading to transient accumulation of pathway intermediates in spermatogenesis. This study provides the first evidence that step 19 spermatids and residual bodies of the rat testis have the capacity to produce MAS sterols in situ.  (+info)

Genetic analysis of azole resistance in the Darlington strain of Candida albicans. (20/180)

High-level azole resistance in the Darlington strain of Candida albicans was investigated by gene replacement in C. albicans and expression in Saccharomyces cerevisiae. We sequenced the ERG11 gene, which encodes the sterol C(14)alpha-demethylase, from our copy of the Darlington strain. Both alleles contained the histidine for tyrosine substitution at position 132 (Y132H) reported in Darlington by others, but we also found a threonine-for-isoleucine substitution (I471T) not previously reported in the C. albicans ERG11. The encoded I471T change in amino acids conferred azole resistance when overexpressed alone and increased azole resistance when added to the Y132H amino acid sequence in an S. cerevisiae expression system. Replacement of one copy of ERG11 in an azole-susceptible strain of C. albicans with a single copy of the Darlington ERG11 resulted in expression of the integrated copy and a modest increase in azole resistance. The profound azole resistance of the Darlington strain is the result of multiple mutations.  (+info)

Role of meiosis-activating sterols in rat oocyte maturation: effects of specific inhibitors and changes in the expression of lanosterol 14alpha-demethylase during the preovulatory period. (21/180)

In vitro studies on mouse oocytes have shown that two closely related sterols, subsequently named meiosis-activating sterols (MAS), can overcome the inhibitory effect of hypoxanthine on the resumption of meiosis. These sterols are synthesized by cytochrome P(450) lanosterol 14alpha-demethylase (LDM), a key enzyme in cholesterol biosynthesis. We have used specific inhibitors of LDM, azalanstat (RS-21607) and RS-21745, to test whether MAS is an obligatory mediator in the resumption of meiosis in the rat. Addition of azalanstat and RS-21745 (1-200 microM) to culture medium of rat isolated cumulus-enclosed oocyte and preovulatory follicle-enclosed oocyte stimulated by LH/hCG did not allow separation between their inhibition of the resumption of meiosis and the degeneration of oocytes. In both models, doses of the drug that inhibited oocyte maturation also increased oocyte degeneration. The inhibitors only partially suppressed follicular progesterone production. We have examined by reverse transcriptase-polymerase chain reaction, Western blotting, and immunocytochemistry the ovarian expression of LDM mRNA and protein during the preovulatory period. We did not find evidence for the stimulation of this enzyme by LH/hCG. The strongest staining by LDM antiserum was obtained in primordial and primary oocytes, and the staining was reduced with oocyte growth. In addition, strong LDM staining could be observed in some of the granulosa cells, especially of the corona radiata localized in close proximity to the oocyte. In conclusion, our results with specific inhibitors and molecular approaches do not reveal evidence to support the hypothesis that MAS is an obligatory step in the stimulation of the resumption of meiosis. Specific inhibitors of MAS synthesis did not prevent spontaneous or LH-stimulated meiosis at doses that have previously been shown to effectively suppress LDM activity. Much higher concentrations of the inhibitors, which affected meiosis, were detrimental to oocytes, leading to their degeneration. The timing of LDM expression in the ovary was incompatible with a role for MAS in meiosis. Finally, the preferential localization of LDM protein to the oocytes suggests MAS production in oocytes rather than its transport from the somatic compartment as implied by the proposed role of MAS as a cumulus-oocyte signal molecule.  (+info)

Structural requirements for substrate recognition of Mycobacterium tuberculosis 14 alpha-demethylase: implications for sterol biosynthesis. (22/180)

Sterol 14 alpha-demethylase (14DM) is a cytochrome P-450 involved in sterol biosynthesis in eukaryotes. It was reported that Mycobacterium smegmatis also makes cholesterol and that cholesterol is essential to Mycobacterium tuberculosis (MT) infection, although the origin of the cholesterol is unknown. A protein product from MT having about 30% sequence identity with eukaryotic 14 alpha-demethylases has been found to convert sterols to their 14-demethyl products indicating that a sterol pathway might exist in MT. To determine the optimal sterol structure recognized by MT 14DM, binding of 28 sterol and sterol-like (triterpenoids) molecules to the purified recombinant 14 alpha-demethylase was examined. Like eukaryotic forms, a 3 beta-hydroxy group and a 14 alpha-methyl group are essential for substrate acceptability by the bacterial 14 alpha-demethylase. The high affinity binding of 31-norcycloartenol without detectable activity indicates that the Delta(8)-bond is required for activity but not for binding. As for plant 14 alpha-demethylases, 31-nor-sterols show a binding preference for MT 14DM. Similar to enzymes from mammals and yeast, a C24-alkyl group is not required for MT 14DM binding and activity, whereas it is for plant 14 alpha-demethylases.Thus, substrate binding to MT 14DM seems to share common features with all eukaryotic 14 alpha-demethylases, the MT form seemingly having the broadest substrate recognition of all forms of 14 alpha-demethylase studied so far. - Bellamine, A., A. T. Mangla, A. L. Dennis, W. D. Nes, and M. R. Waterman. Structural requirements for substrate recognition of Mycobacterium tuberculosis 14 alpha-demethylase: implications for sterol biosynthesis. J. Lipid Res. 2001. 42: 128;-136.  (+info)

LDL downregulates CYP51 in porcine vascular endothelial cells and in the arterial wall through a sterol regulatory element binding protein-2-dependent mechanism. (23/180)

Hypercholesterolemia is associated with endothelial dysfunction and atherosclerotic lesion formation. By mRNA-differential display analysis, we have identified lanosterol 14alpha-demethylase (CYP51) as a gene highly regulated by native LDLs (nLDLs) in endothelial cells. CYP51 is a cytochrome P-450 enzyme involved in the postsqualene phases of cholesterol biosynthesis. CYP51 mRNA levels decrease in nLDL-treated cells in a dose- and time-dependent manner (9-fold after 24 hours with 180 mg of LDL cholesterol per deciliter), an effect that is blocked by cycloheximide. In parallel, sterol regulatory element (SRE) binding protein-2 (SREBP-2) expression falls (10-fold), without alteration in SREBP-1 level. N:-Acetyl-leucyl-leucyl-norleucinal, which inhibits catabolism of the active form of SREBPs, abolished the effect of high concentrations of nLDL on CYP51 expression. Gel-shift assays performed with the SRE of the cyp51 gene (cyp51-SRE) revealed a diminished SREBP-SRE interaction in LDL-treated cells. Moreover, nLDLs downregulate CYP51 promoter activity in transfection assays. Thus, atherogenic levels of nLDL downregulate endothelial CYP51 mRNA levels through a reduction in SRE-SREBP-2 interaction. Additionally, SREBP-2 and CYP51 mRNA levels are decreased in the arterial wall of hypercholesterolemic pigs. In summary, we have described for the first time, both in in vivo and in vitro systems, that CYP51 is expressed in the vascular wall and that it is downregulated together with SREBP-2 by high levels of nLDL. Because this transcription factor controls multiple cell lipid metabolism pathways, its regulation by nLDL could play a key role in lipid-mediated endothelial dysfunction.  (+info)

Crystal structure of cytochrome P450 14alpha -sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. (24/180)

Cytochrome P450 14alpha-sterol demethylases (CYP51) are essential enzymes in sterol biosynthesis in eukaryotes. CYP51 removes the 14alpha-methyl group from sterol precursors such as lanosterol, obtusifoliol, dihydrolanosterol, and 24(28)-methylene-24,25-dihydrolanosterol. Inhibitors of CYP51 include triazole antifungal agents fluconazole and itraconazole, drugs used in treatment of topical and systemic mycoses. The 2.1- and 2.2-A crystal structures reported here for 4-phenylimidazole- and fluconazole-bound CYP51 from Mycobacterium tuberculosis (MTCYP51) are the first structures of an authentic P450 drug target. MTCYP51 exhibits the P450 fold with the exception of two striking differences-a bent I helix and an open conformation of BC loop-that define an active site-access channel running along the heme plane perpendicular to the direction observed for the substrate entry in P450BM3. Although a channel analogous to that in P450BM3 is evident also in MTCYP51, it is not open at the surface. The presence of two different channels, with one being open to the surface, suggests the possibility of conformationally regulated substrate-in/product-out openings in CYP51. Mapping mutations identified in Candida albicans azole-resistant isolates indicates that azole resistance in fungi develops in protein regions involved in orchestrating passage of CYP51 through different conformational stages along the catalytic cycle rather than in residues directly contacting fluconazole. These new structures provide a basis for rational design of new, more efficacious antifungal agents as well as insight into the molecular mechanism of P450 catalysis.  (+info)