BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. (49/154)

Plant steroid hormones, brassinosteroids (BRs), are perceived by the plasma membrane-localized leucine-rich-repeat-receptor kinase BRI1. Based on sequence similarity, we have identified three members of the BRI1 family, named BRL1, BRL2 and BRL3. BRL1 and BRL3, but not BRL2, encode functional BR receptors that bind brassinolide, the most active BR, with high affinity. In agreement, only BRL1 and BRL3 can rescue bri1 mutants when expressed under the control of the BRI1 promoter. While BRI1 is ubiquitously expressed in growing cells, the expression of BRL1 and BRL3 is restricted to non-overlapping subsets of vascular cells. Loss-of-function of brl1 causes abnormal phloem:xylem differentiation ratios and enhances the vascular defects of a weak bri1 mutant. bri1 brl1 brl3 triple mutants enhance bri1 dwarfism and also exhibit abnormal vascular differentiation. Thus, Arabidopsis contains a small number of BR receptors that have specific functions in cell growth and vascular differentiation.  (+info)

A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. (50/154)

We have characterized a rice (Oryza sativa) dwarf mutant, dwarf11 (d11), that bears seeds of reduced length. To understand the mechanism by which seed length is regulated, the D11 gene was isolated by a map-based cloning method. The gene was found to encode a novel cytochrome P450 (CYP724B1), which showed homology to enzymes involved in brassinosteroid (BR) biosynthesis. The dwarf phenotype of d11 mutants was restored by the application of the brassinolide (BL). Compared with wild-type plants, the aberrant D11 mRNA accumulated at higher levels in d11 mutants and was dramatically reduced by treatment with BL, implying that the gene is feedback-regulated by BL. Precise determination of the defective step(s) in BR synthesis in d11 mutants proved intractable because of tissue specificity and the complex control of BR accumulation in plants. However, 6-deoxotyphasterol (6-DeoxoTY) and typhasterol (TY), but not any upstream intermediates before these compounds, effectively restored BR response in d11 mutants in a lamina joint bending assay. Multiple lines of evidence together suggest that the D11/CYP724B1 gene plays a role in BR synthesis and may be involved in the supply of 6-DeoxoTY and TY in the BR biosynthesis network in rice.  (+info)

The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. (51/154)

Brassinosteroids are steroidal hormones essential for the growth and development of plants. Brassinolide, the most biologically active brassinosteroid, has a seven-membered lactone ring that is formed by a Baeyer-Villiger oxidation of its immediate precursor castasterone. Despite its potential key role in controlling plant development, brassinolide synthase has not been identified. Previous work has shown that the formation of castasterone from 6-deoxocastasterone is catalyzed by members of the CYP85A family of cytochrome P-450 monooxygenases. A null mutation in the tomato Dwarf (CYP85A1) gene, extreme dwarf (d(x)), causes severe dwarfism due to brassinosteroid deficiency, but the d(x) mutant still produces fruits. Here, we show that d(x) fruits contain brassinolide at a higher level than wild-type fruits and that a new CYP85A gene, CYP85A3, is preferentially expressed in tomato fruits. Tomato CYP85A3 catalyzed the Baeyer-Villiger oxidation to produce brassinolide from castasterone in yeast, in addition to the conversion of 6-deoxocastasterone to castasterone. We also show that Arabidopsis CYP85A2, which was initially characterized as castasterone synthase, also has brassinolide synthase activity. Exogenous application of castasterone and brassinolide to the Arabidopsis cyp85a1/cyp85a2 double mutant suggests that castasterone can function as an active brassinosteroid but that its conversion into brassinolide is necessary for normal vegetative development in Arabidopsis. We postulate that castasterone is the major active brassinosteroid during vegetative growth in tomato, whereas brassinolide may play an organ-specific role in fruit development in this species.  (+info)

Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. (52/154)

Homeostasis of brassinosteroids (BRs) is essential for normal growth and development in higher plants. We examined responsiveness of 11 BR metabolic gene expressions to the decrease or increase of endogenous BR contents in Arabidopsis (Arabidopsis thaliana) to expand our knowledge of molecular mechanisms underlying BR homeostasis. Five BR-specific biosynthesis genes (DET2, DWF4, CPD, BR6ox1, and ROT3) and two sterol biosynthesis genes (FK and DWF5) were up-regulated in BR-depleted wild-type plants grown under brassinazole, a BR biosynthesis inhibitor. On the other hand, in BR-excessive wild-type plants that were fed with brassinolide, four BR-specific synthesis genes (DWF4, CPD, BR6ox1, and ROT3) and a sterol synthesis gene (DWF7) were down-regulated and a BR inactivation gene (BAS1) was up-regulated. However, their response to fluctuation of BR levels was highly reduced (DWF4) or nullified (the other eight genes) in a bri1 mutant. Taken together, our results imply that BR homeostasis is maintained through feedback expressions of multiple genes, each of which is involved not only in BR-specific biosynthesis and inactivation, but also in sterol biosynthesis. Our results also indicate that their feedback expressions are under the control of a BRI1-mediated signaling pathway. Moreover, a weak response in the mutant suggests that DWF4 alone is likely to be regulated in other way(s) in addition to BRI1 mediation.  (+info)

Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. (53/154)

The leucine-rich-repeat receptor serine/threonine kinase, BRI1, is a cell-surface receptor for brassinosteroids (BRs), the steroid hormones of plants, yet its activation mechanism is unknown. Here, we report a unique autoregulatory mechanism of BRI1 activation. Removal of BRI1's C terminus leads to a hypersensitive receptor, indicated by suppression of dwarfism of BR-deficient and BR-perception mutants and by enhanced BR signaling as a result of elevated phosphorylation of BRI1. Several sites in the C-terminal region can be phosphorylated in vitro, and transgenic Arabidopsis expressing BRI1 mutated at these sites demonstrates an essential role of phosphorylation in BRI1 activation. BRI1 is a ligand-independent homo-oligomer, as evidenced by the transphosphorylation of BRI1 kinase in vitro, the dominant-negative effect of a kinase-inactive BRI1 in transgenic Arabidopsis, and coimmunoprecipitation experiments. Our results support a BRI1-activation model that involves inhibition of kinase activity by its C-terminal domain, which is relieved upon ligand binding to the extracellular domain.  (+info)

Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. (54/154)

The conversion of castasterone (CS) to brassinolide (BL), a Baeyer-Villiger oxidation, represents the final and rate-limiting step in the biosynthesis of BL in plants. Heterologously expressed Arabidopsis thaliana CYP85A2 in yeast mediated the conversion of CS to BL as well as the C-6 oxidation of brassinosteroids (BRs). This indicated that CYP85A2 is a bifunctional enzyme that possesses BR C-6 oxidase and BL synthase activity. CYP85A2 is thus a cytochrome P450 that mediates Baeyer-Villiger oxidation in plants. Biochemical, physiological, and molecular genetic analyses of Arabidopsis CYP85A2 loss-of-function and overexpression lines demonstrated that CS has to be a bioactive BR that controls the overall growth and development of Arabidopsis plants. Mutant studies also revealed that BL may not always be necessary for normal growth and development but that Arabidopsis plants acquire great benefit in terms of growth and development in the presence of BL.  (+info)

Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. (55/154)

Brassinosteroids (BRs) are important plant growth regulators in multiple developmental processes. Previous studies have indicated that BR treatment enhanced auxin-related responses, but the underlying mechanisms remain unknown. Using (14)C-labeled indole-3-acetic acid and Arabidopsis thaliana plants harboring an auxin-responsive reporter construct, we show that the BR brassinolide (BL) stimulates polar auxin transport capacities and modifies the distribution of endogenous auxin. In plants treated with BL or defective in BR biosynthesis or signaling, the transcription of PIN genes, which facilitate functional auxin transport in plants, was differentially regulated. In addition, BL enhanced plant tropistic responses by promoting the accumulation of the PIN2 protein from the root tip to the elongation zone and stimulating the expression and dispersed localization of ROP2 during tropistic responses. Constitutive overexpression of ROP2 results in enhanced polar accumulation of PIN2 protein in the root elongation region and increased gravitropism, which is significantly affected by latrunculin B, an inhibitor of F-actin assembly. The ROP2 dominant negative mutants (35S-ROP2-DA/DN) show delayed tropistic responses, and this delay cannot be reversed by BL addition, strongly supporting the idea that ROP2 modulates the functional localization of PIN2 through regulation of the assembly/reassembly of F-actins, thereby mediating the BR effects on polar auxin transport and tropistic responses.  (+info)

The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. (56/154)

Steroid hormones are essential for development, and the precise control of their homeostasis is a prerequisite for normal growth. UDP-glycosyltransferases (UGTs) are considered to play an important regulatory role in the activity of steroids in mammals and insects. This study provides an indication that a UGT accepting plant steroids as substrates functions in brassinosteroid (BR) homeostasis. The UGT73C5 of Arabidopsis thaliana catalyses 23-O-glucosylation of the BRs brassinolide (BL) and castasterone. Transgenic plants overexpressing UGT73C5 displayed BR-deficient phenotypes and contained reduced amounts of BRs. The phenotype, which was already apparent in seedlings, could be rescued by application of BR. In feeding experiments with BL, wild-type seedlings converted BL to the 23-O-glucoside; in the transgenic lines silenced in UGT73C5 expression, no 23-O-glucoside was detected, implying that this UGT is the only enzyme that catalyzes BL-23-O-glucosylation in seedlings. Plant lines in which UGT73C5 expression was altered also displayed hypocotyl phenotypes previously described for seedlings in which BR inactivation by hydroxylation was changed. These data support the hypothesis that 23-O-glucosylation of BL is a function of UGT73C5 in planta, and that glucosylation regulates BR activity.  (+info)