Loading...
(1/1365) Induction of hepatic cytochromes P450 in dogs exposed to a chronic low dose of polychlorinated biphenyls.

Induction of cytochrome P450 isoforms, specifically CYP1A1, and their catalytic activities are potential biomarkers of environmental contamination by polychlorinated biphenyls (PCBs). In this study, dogs were exposed to 25 ppm or 5 ppm Aroclor 1248 (PCB mixture) daily in their diet for 10 or 20 weeks, respectively. Relative to controls, hepatic microsomes from dogs dosed with PCBs had higher levels of CYP1A1 detected in immunoblots and higher levels of EROD activity, but low levels of induction for CYP2B and PROD activity. Concentrations of 96 PCB congeners in serum and liver were evaluated using capillary chromatography. Results showed that all dogs exposed to PCB mixtures had higher levels of PCB in serum and liver. Dogs preferentially sequestered highly chlorinated PCB congeners in liver relative to serum. With these experiments, we demonstrated that EROD activity was a potentially sensitive marker of PCB exposure at 5 and 25 ppm. Furthermore, CYP1A1 and EROD activity were maximally induced in dogs consuming dietary concentrations only 2.5 times the maximal permissible level for human food (FDA). The value of CYP1A1 induction as a biomarker of PCB exposure was tenuous because neither CYP1A1 levels nor EROD activity correlated with total PCB body burden. However, a small subset of congeners were identified in liver that may strongly influence EROD and PROD induction. Finally, two dogs in the 25 ppm dose group were fasted for 48 h. After 24 h of fasting, several new congeners appeared in the serum and remained in the serum for the remainder of the fast. The fast caused a 293% increase in PCB concentration in serum. This increase has strong implications regarding mobilization of toxic PCBs in wildlife during fasting (e.g., migration, hibernation).  (+info)

(2/1365) An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3.

Steroid hormones may enter cells by diffusion through the plasma membrane. However, we demonstrate here that some steroid hormones are taken up by receptor-mediated endocytosis of steroid-carrier complexes. We show that 25-(OH) vitamin D3 in complex with its plasma carrier, the vitamin D-binding protein, is filtered through the glomerulus and reabsorbed in the proximal tubules by the endocytic receptor megalin. Endocytosis is required to preserve 25-(OH) vitamin D3 and to deliver to the cells the precursor for generation of 1,25-(OH)2 vitamin D3, a regulator of the calcium metabolism. Megalin-/- mice are unable to retrieve the steroid from the glomerular filtrate and develop vitamin D deficiency and bone disease.  (+info)

(3/1365) Antilithiasic effect of beta-cyclodextrin in LPN hamster: comparison with cholestyramine.

Beta-Cyclodextrin (BCD), a cyclic oligosaccharide that binds cholesterol and bile acids in vitro, has been previously shown to be an effective plasma cholesterol lowering agent in hamsters and domestic pigs. This study examined the effects of BCD as compared with cholestyramine on cholesterol and bile acid metabolism in the LPN hamster model model for cholesterol gallstones. The incidence of cholesterol gallstones was 65% in LPN hamsters fed the lithogenic diet, but decreased linearly with increasing amounts of BCD in the diet to be nil at a dose of 10% BCD. In gallbladder bile, cholesterol, phospholipid and chenodeoxycholate concentrations, hydrophobic and lithogenic indices were all significantly decreased by 10% BCD. Increases in bile acid synthesis (+110%), sterol 27-hydroxylase activity (+106%), and biliary cholate secretion (+140%) were also observed, whereas the biliary secretion of chenodeoxycholate decreased (-43%). The fecal output of chenodeoxycholate and cholate (plus derivatives) was increased by +147 and +64%, respectively, suggesting that BCD reduced the chenodeoxycholate intestinal absorption preferentially. Dietary cholestyramine decreased biliary bile acid concentration and secretion, but dramatically increased the fecal excretion of chenodeoxycholate and cholate plus their derivatives (+328 and +1940%, respectively). In contrast to BCD, the resin increased the lithogenic index in bile, induced black gallstones in 34% of hamsters, and stimulated markedly the activities of HMG-CoA reductase (+670%), sterol 27-hydroxylase (+310%), and cholesterol 7alpha-hydroxylase (+390%). Thus, beta-cyclodextrin (BCD) prevented cholesterol gallstone formation by decreasing specifically the reabsorption of chenodeoxycholate, stimulating its biosynthesis and favoring its fecal elimination. BCD had a milder effect on lipid metabolism than cholestyramine and does not predispose animals to black gallstones as cholestyramine does in this animal model.  (+info)

(4/1365) Expression of 25(OH)D3 24-hydroxylase in distal nephron: coordinate regulation by 1,25(OH)2D3 and cAMP or PTH.

Previous studies using microdissected nephron segments reported that the exclusive site of renal 25-hydroxyvitamin D3-24-hydroxylase (24OHase) activity is the renal proximal convoluted tubule (PCT). We now report the presence of 24OHase mRNA, protein, and activity in cells that are devoid of markers of proximal tubules but express characteristics highly specific for the distal tubule. 24OHase mRNA was undetectable in vehicle-treated mouse distal convoluted tubule (DCT) cells but was markedly induced when DCT cells were treated with 1,25 dihydroxyvitamin D3 [1,25(OH)2D3]. 24OHase protein and activity were also identified in DCT cells by Western blot analysis and HPLC, respectively. 8-Bromo-cAMP (1 mM) or parathyroid hormone [PTH-(1-34); 10 nM] was found to potentiate the effect of 1, 25(OH)2D3 on 24OHase mRNA. The stimulatory effect of cAMP or PTH on 24OHase expression in DCT cells suggests differential regulation of 24OHase expression in the PCT and DCT. In the presence of cAMP and 1, 25(OH)2D3, a four- to sixfold induction in vitamin D receptor (VDR) mRNA was observed. VDR protein, as determined by Western blot analysis, was also enhanced in the presence of cAMP. Transient transfection analysis in DCT cells with rat 24OHase promoter deletion constructs demonstrated that cAMP enhanced 1, 25(OH)2D3-induced 24OHase transcription but this enhancement was not mediated by cAMP response elements (CREs) in the 24OHase promoter. We conclude that 1) although the PCT is the major site of localization of 24OHase, 24OHase mRNA and activity can also be localized in the distal nephron; 2) both PTH and cAMP modulate the induction of 24OHase expression by 1,25(OH)2D3 in DCT cells in a manner different from that reported in the PCT; and 3) in DCT cells, upregulation of VDR levels by cAMP, and not an effect on CREs in the 24OHase promoter, is one mechanism involved in the cAMP-mediated modulation of 24OHase transcription.  (+info)

(5/1365) Analysis of RNA-protein interactions of mouse liver cytochrome P4502A5 mRNA.

In our previous studies we have identified a 37/39 kDa, pyrazole-inducible, cytochrome P4502A5 (CYP2A5) mRNA binding protein and provided evidence that it may play a role in the stabilization and processing of the RNA [Geneste, Rafalli and Lang (1996) Biochem. J. 313, 1029-1037; Thulke-Gross, Hergenhahn, Tilloy-Ellul, Lang and Bartsch (1998) Biochem. J. 331, 473-481]. Details of the RNA-protein interactions are, however, not known. In this report we have performed an analysis of the interaction between the CYP2A5 mRNA and the 37/39 kDa protein. With UV-cross linking experiments, using RNA probes corresponding to various parts of the CYP2A5 mRNA, and with antisense oligonucleotides complementary to certain areas of the 3'-untranslated region (3'UTR), we could map the primary binding site to the tip of a 71 nt hair-pin loop at the 3'-UTR. This analysis also showed that the protein may have more than one site of interaction with the RNA and/or that, within the binding region, there could be more than one protein molecule binding to the RNA. Analysis of the probable conformations of the various probes used in the UV cross-linking experiments, in combination with the estimated binding affinities of the protein to the different probes, suggests that important factors in the high-affinity binding are the UAG triplet flanked by GA-rich sequences at the tip of the hair-pin loop, in addition to the conformation of the loop itself. Within the binding region, similarities with known binding sites of heterogeneous nuclear ribonucleoprotein (hnRNP) A1 in other RNA molecules were revealed by sequence alignment analysis. Moreover, competition experiments with an oligoribonucleotide corresponding to a known high-affinity binding site of hnRNP A1, and immunoprecipitation of the UV cross-linked 37/39 kDa complex showed that the protein binding to the CYP2A5 mRNA could be hnRNP A1 or its close analogue. It was also shown that the 37/39 kDa protein binds with less affinity to CYP2A4 mRNA than to CYP2A5 mRNA. This is in accordance with experiments characterizing the binding site, since these two otherwise highly homologous genes are kown to have a three nucleotide difference within the region important for the high binding affinity. Since the response of CYP2A4 to pyrazole is known to be weak, as compared with CYP2A5, this observation provides further evidence for a regulatory role of the 37/39 kDa protein in CYP2A5 mRNA metabolism.  (+info)

(6/1365) Competition between cytochrome P-450 isozymes for NADPH-cytochrome P-450 oxidoreductase affects drug metabolism.

NADPH-cytochrome P-450 oxidoreductase (CPR) is essential for the catalytic activity of cytochrome P-450 (P-450). On a molar basis, the amount of P-450 exceeds that of CPR in human liver. In this study, we investigated whether drug-drug interactions can occur as a result of competition between P-450 isozymes for this ancillary protein. For this purpose, combinations of P-450 isozymes were coexpressed together with P-450 reductase in Escherichia coli. We show that testosterone inhibited the CYP2D6-mediated bufuralol 1'-hydroxylase activity in bacterial membranes containing both CYP2D6 and CYP3A4 but not in membranes containing CYP2D6 alone. Conversely, bufuralol inhibited the CYP3A4-mediated testosterone 6beta-hydroxylase activity in bacterial membranes containing both CYP3A4 and CYP2D6 but not in membranes containing only CYP3A4. In each case, inhibition was seen even at a P-450 to P-450 reductase ratio of 1.9:1, which is more favorable than the ratio of 4 reported for human liver. The physiological significance of this mechanism was demonstrated by the observation that testosterone inhibited several prototypical P-450 enzyme activities, such as bufuralol 1'-hydroxylase, coumarin 7-hydroxylase, and 7-ethoxyresorufin O-dealkylase, in human liver microsomes, but not if tested against a panel of bacterial membranes containing the human P-450 isozymes that mainly catalyze these reactions.  (+info)

(7/1365) Metabolic studies using recombinant escherichia coli cells producing rat mitochondrial CYP24 CYP24 can convert 1alpha,25-dihydroxyvitamin D3 to calcitroic acid.

Previously we expressed rat 25-hydroxyvitamin D3 24-hydroxylase (CYP24) cDNA in Escherichia coli JM109 and showed that CYP24 catalyses three-step monooxygenation towards 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3 [Akiyoshi-Shibata, M., Sakaki, T., Ohyama, Y., Noshiro, M., Okuda, K. & Yabusaki, Y. (1994) Eur. J. Biochem. 224, 335-343]. In this study, we demonstrate further oxidation by CYP24 including four- and six-step monooxygenation towards 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3, respectively. When the substrate 25-hydroxyvitamin D3 was added to a culture of recombinant E. coli, four metabolites, 24, 25-dihydroxyvitamin D3, 24-oxo-25-hydroxyvitamin D3, 24-oxo-23, 25-dihydroxyvitamin D3 and 24,25,26,27-tetranor-23-hydroxyvitamin D3 were observed. These results indicate that CYP24 catalyses at least four-step monooxygenation toward 25-hydroxyvitamin D3. Furthermore, in-vivo and in-vitro metabolic studies on 1alpha,25-dihydroxyvitamin D3 clearly indicated that CYP24 catalyses six-step monooxygenation to convert 1alpha,25-dihydroxyvitamin D3 into calcitroic acid which is known as a final metabolite of 1alpha,25-dihydroxyvitamin D3 for excretion in bile. These results strongly suggest that CYP24 is largely responsible for the metabolism of both 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3.  (+info)

(8/1365) Thyroid hormone suppresses hepatic sterol 12alpha-hydroxylase (CYP8B1) activity and messenger ribonucleic acid in rat liver: failure to define known thyroid hormone response elements in the gene.

Sterol 12alpha-hydroxylase (CYP 8B1) is a microsomal cytochrome P450 enzyme involved in bile acid synthesis that is of critical importance for the composition of bile acids formed in the liver. Thyroidectomy of rats caused a more than twofold increase of CYP8B1 and an almost fourfold increase of the corresponding mRNA levels compared to sham-operated rats. Treatment of intact rats with thyroxine caused a 60% reduction of enzyme activity and a 50% reduction of mRNA levels compared to rats injected with saline only. To investigate whether the promoter of the gene contains thyroid hormone response elements, the complete structure of the rat gene was defined. In similarity with the corresponding gene in mouse, rabbit and man, the rat gene was found to lack introns. It had an open reading frame containing 1500 bp corresponding to a protein of 499 amino acid residues. Although thyroid hormone decreased CYP8B1 activity and mRNA in vivo, no hitherto described thyroid hormone response elements were identified 1883 bases upstream of the transcription start site. It is concluded that rat CYP8B1 is regulated by thyroid hormone at the mRNA level. The results are discussed in relation to the structure of the gene coding for the enzyme.  (+info)