The oral contraceptive pill: a revolution for sportswomen? (25/1605)

OBJECTIVES: To determine the effects of the oral contraceptive pill (OCP) on skeletal health, soft tissue injury, and performance in female athletes. METHODS: A literature review was performed using literature retrieval methods to locate relevant studies. RESULTS: Most female athletes primarily choose to use the OCP for contraceptive purposes, but cycle manipulation and control of premenstrual symptoms are secondary advantages of its use. The effect of the OCP on bone density in normally menstruating women is unclear, with some studies reporting no effect, others a positive effect, and some even a negative effect. The OCP is often prescribed for the treatment of menstrual disturbances in female athletes, and improvements in bone density may result. Whether the OCP influences the risk of stress fracture and soft tissue injuries is not clear from research to date. Effects of the OCP on performance are particularly relevant for elite sportswomen. Although a reduction in Vo2MAX has been reported in some studies, this may not necessarily translate to impaired performance in the field. Moreover, some studies claim that the OCP may well enhance performance by reducing premenstrual symptoms and menstrual blood loss. A fear of weight gain with the use of the OCP is not well founded, as population studies report no effect on weight, particularly with the lower dose pills currently available. CONCLUSIONS: Overall, the advantages of the pill for sportswomen would appear to outweigh any potential disadvantages. Nevertheless, there is individual variation in response to the OCP and these should be taken into account and monitored in the clinical situation. Women should be counselled as to the range of potential benefits and disadvantages in order to make an informed decision based on individual circumstances.  (+info)

Effects of velocity on upper to lower extremity muscular work and power output ratios of intercollegiate athletes. (26/1605)

OBJECTIVES: Peak torque expresses a point output which may, but does not always, correlate well with full range output measures such as work or power, particularly in a rehabilitating muscle. This study evaluates isokinetic performance variables, particularly (a) flexor to extensor work and power output ratios of upper and lower extremities and (b) overall upper to lower extremity work and power ratios, in intercollegiate athletes. The purpose was to ascertain how speeds of 30 and 180 degrees/s influence agonist to antagonist ratios for torque, work, and power and to determine the effects of these speeds on upper to lower limb flexor (F), extensor (E), and combined (F + E) ratios, as a guide to rehabilitation protocols and outcomes after injury. METHODS: Twenty seven athletic men without upper or lower extremity clinical histories were tested isokinetically at slow and moderately fast speeds likely to be encountered in early stages of rehabilitation after injury. Seated knee extensor and flexor outputs, particularly work and power, were investigated, as were full range elbow extensor and flexor outputs. The subjects were morphologically similar in linearity and muscularity (coefficient of variation 4.17%) so that standardisation of isokinetic outputs to body mass effectively normalised for strength differences due to body size. Peak torque (N.m/kg), total work (J/kg), and average power (W/kg) for elbow and knee flexions and extensions were measured on a Cybex 6000 isokinetic dynamometer. With respect to the raw data, the four test conditions (F at 30 degrees/s; E at 30 degrees/s; F at 180 degrees/s; E at 180 degrees/s) were analysed by one way analysis of variance. Reciprocal (agonist to antagonist) F to E ratios of the upper and lower extremities were calculated, as were upper to lower extremity flexor, extensor, and combined (F + E) ratios. Speed related differences between the derived ratios were analysed by Student's t tests (related samples). RESULTS: At the speeds tested all torque responses exhibited velocity related decrements at rates that kept flexor to extensor ratios and upper to lower extremity ratios constant (p > 0.05) for work and power. All upper extremity relative torque, work, and power flexion responses were equal to extension responses (p > 0.05) regardless of speed. Conversely, all lower extremity relative measures of torque, work, and power of flexors were significantly lower than extensor responses. In the case of both upper and lower extremities, work and power F to E ratios were unaffected by speed. Moreover, increasing speed from 30 to 180 degrees/s had no effect on upper to lower extremity work and power ratios, whether for flexion, extension, or flexion and extension combined. CONCLUSIONS: Peak torque responses may not adequately reflect tension development through an extensive range of motion. Total work produced and mean power generated, on the other hand, are highly relevant measures of performance, and these, expressed as F to E ratios, are unaffected by speeds of 30 and 180 degrees/s, whether for upper or lower extremities or for upper to lower extremities. In this sample, regardless of speed, the upper extremity produced 55% of the work and 39% of the power of the lower extremity, when flexor and extensor outputs were combined. Injured athletes are, in the early stages of function restoration, often not able to exert tension at fast speeds. An understanding of upper to lower extremity muscular work and power ratios has important implications for muscle strengthening after injury. Knowledge of normal upper to lower extremity work and power output ratios at slow to moderately fast isokinetic speeds is particularly useful in cases of bilateral upper (or lower) extremity rehabilitation, when the performance of a contralateral limb cannot be used as a yardstick.  (+info)

The wrist of the formula 1 driver. (27/1605)

OBJECTIVES: During formula 1 driving, repetitive cumulative trauma may provoke nerve disorders such as nerve compression syndrome as well as osteoligament injuries. A study based on interrogatory and clinical examination of 22 drivers was carried out during the 1998 formula 1 World Championship in order to better define the type and frequency of these lesions. METHODS: The questions investigated nervous symptoms, such as paraesthesia and diminishment of sensitivity, and osteoligamentous symptoms, such as pain, specifying the localisation (ulnar side, dorsal aspect of the wrist, snuff box) and the effect of the wrist position on the intensity of the pain. Clinical examination was carried out bilaterally and symmetrically. RESULTS: Fourteen of the 22 drivers reported symptoms. One suffered cramp in his hands at the end of each race and one described a typical forearm effort compartment syndrome. Six drivers had effort "osteoligamentous" symptoms: three scapholunate pain; one medial hypercompression of the wrist; two sequellae of a distal radius fracture. Seven reported nerve disorders: two effort carpal tunnel syndromes; one typical carpal tunnel syndrome; one effort cubital tunnel syndrome; three paraesthesia in all fingers at the end of a race, without any objective signs. CONCLUSIONS: This appears to be the first report of upper extremity disorders in competition drivers. The use of a wrist pad to reduce the effects of vibration may help to prevent trauma to the wrist in formula 1 drivers.  (+info)

Physical fitness and vegetarian diets: is there a relation? (28/1605)

The available evidence supports neither a beneficial nor a detrimental effect of a vegetarian diet on physical performance capacity, especially when carbohydrate intake is controlled for. Concerns have been raised that an emphasis on plant foods to enhance carbohydrate intake and optimize body glycogen stores may lead to increases in dietary fiber and phytic acid intake to concentrations that reduce the bioavailability of several nutrients, including zinc, iron, and some other trace minerals. There is no convincing evidence, however, that vegetarian athletes suffer impaired nutrient status from the interactive effect of their heavy exertion and plant-food based dietary practices to the extent that performance, health, or both are impaired. Although there has been some concern about protein intake for vegetarian athletes, data indicate that all essential and nonessential amino acids can be supplied by plant food sources alone as long as a variety of foods is consumed and the energy intake is adequate. There has been some concern that vegetarian female athletes are at increased risk for oligoamenorrhea, but evidence suggests that low energy intake, not dietary quality, is the major cause. In conclusion, a vegetarian diet per se is not associated with improved aerobic endurance performance. Although some concerns have been raised about the nutrient status of vegetarian athletes, a varied and well-planned vegetarian diet is compatible with successful athletic endeavor.  (+info)

Prediction and compensation by an internal model for back forces during finger opening in an overarm throw. (29/1605)

Previous studies have indicated that timing of finger opening in an overarm throw is likely controlled centrally, possibly by means of an internal model of hand trajectory. The present objective was to extend the study of throwing to an examination of the dynamics of finger opening. Throwing a heavy ball and throwing a light ball presumably require different neural commands, because the weight of the ball affects the mechanics of the arm, and particularly, the mechanics of the finger. Yet finger control is critical to the accuracy of an overarm throw. We hypothesized that finger opening in an overarm throw is controlled by a central mechanism that uses an internal model to predict and compensate for movement-dependent back forces on the fingers. To test this idea we determined whether finger motion is affected by back forces, i.e., whether larger back forces cause larger finger extensions. Back forces were varied by having subjects throw, at the same fast speed, tennis-sized balls of different weights (14, 55, and 196 g). Arm- and finger-joint rotations were recorded with the search-coil technique; forces on the middle finger were measured with force transducers. Recordings showed that during ball release, the middle finger experienced larger back forces in throws with heavier balls. Nevertheless, most subjects showed proximal interphalangeal joint extensions that were unchanged or actually smaller with the heavier balls. This was the case for the first throw and for all subsequent throws with a ball of a new weight. This suggests that the finger flexors compensated for the larger back forces by exerting larger torques during finger extension. Supporting this view, at the moment of ball release, all finger joints flexed abruptly due to the now unopposed torques of the finger flexors, and the amplitude of this flexion was proportional to ball weight. We conclude that in overarm throws made with balls of different weights, the CNS predicts the different back forces from the balls and adjusts finger flexor torques accordingly. This is consistent with the view that finger opening in overarm throws is controlled by means of an internal model of the motor apparatus and the external load.  (+info)

Elite athletes and the gene for angiotensin-converting enzyme. (30/1605)

The deletion (D) allele of the gene for angiotensin-converting enzyme (ACE) is associated with higher plasma and tissue levels of the enzyme and has also been related to a variety of cardiovascular complications, particularly myocardial infarction. On the basis of indirect evidence, we hypothesized that inheritance of the D allele would contribute to elite athletic ability. Over a period of 4 yr, 120 Caucasian athletes who were national (Australian) representatives in sports demanding a high level of aerobic fitness were recruited. Their ACE genotypes were compared with those of a community control group recruited randomly from the electoral roll. There was no difference in ACE genotype frequencies between the two groups. The DD genotype frequency was 30% in athletes and 29% in the control group, and the II genotype frequency was 22.5 and 22%, respectively. The results do not exclude the possibility that ACE genotype could be related to some attribute relating to a specific type of elite athletic ability or that there may be a difference between genders. Larger studies are desirable.  (+info)

Reliability and validity of body composition measures in female athletes. (31/1605)

The purpose of this investigation was to determine the reliability and validity of bioelectrical impedance (BIA) and near-infrared interactance (NIR) for estimating body composition in female athletes. Dual-energy X-ray absorptiometry was used as the criterion measure for fat-free mass (FFM). Studies were performed in 132 athletes [age = 20.4 +/- 1.5 (SD) yr]. Intraclass reliabilities (repeat and single trial) were 0.987-0.997 for BIA (resistance and reactance) and 0.957-0.980 for NIR (optical densities). Validity of BIA and NIR was assessed by double cross-validation. Because correlations were high (r = 0.969-0.983) and prediction errors low, a single equation was developed by using all 132 subjects for both BIA and NIR. Also, an equation was developed for all subjects by using height and weight only. Results from dual-energy X-ray absorptiometry analysis showed FFM = 49.5 +/- 6.0 kg, which corresponded to %body fat (%BF) of 20.4 +/- 3.1%. BIA predicted FFM at 49.4 +/- 5.9 kg (r = 0.981, SEE = 1.1), and NIR prediction was 49. 5 +/- 5.8 kg (r = 0.975, SEE = 1.2). Height and weight alone predicted FFM at 49.4 +/- 5.7 kg (r = 0.961, SEE = 1.6). When converted to %BF, prediction errors were approximately 1.8% for BIA and NIR and 2.9% for height and weight. Results showed BIA and NIR to be extremely reliable and valid techniques for estimating body composition in college-age female athletes.  (+info)

Assessment and management of concussion in sports. (32/1605)

The most common head injury in sports is concussion. Athletes who sustain a prolonged loss of consciousness should be transported immediately to a hospital for further evaluation. Assessment of less severe injuries should include a thorough neurologic examination. The duration of symptoms and the presence or absence of post-traumatic amnesia and loss of consciousness should be noted. To avoid premature return to play, a good understanding of the possible hazards is important. Potential hazards of premature return to play include the possibility of death from second-impact syndrome, permanent neurologic impairment from cumulative trauma, and the postconcussion syndrome.  (+info)