Intact myelinated fibres in biopsies of ventral spinal roots after preganglionic traction injury to the brachial plexus. A proof that Sherrington's 'wrong way afferents' exist in man? (65/960)

Bell-Magendie's law of separation of spinal function states that afferent and efferent fibres join the spinal cord separately in ventral and dorsal spinal nerve roots. For over 100 years there have been reports that challenge the exclusiveness of this law in mammals; very few studies have referred to man. We conducted a prospective morphological study in patients with preganglionic traction injuries of the brachial plexus to address this question. Avulsed ventral and dorsal roots were examined after variable intervals from the injury for histological and ultrastructural evidence for myelinated afferent fibres entering the cord via the ventral roots. Intact myelinated fibres were found in all ventral root specimens, but the majority of fibres in later biopsies are regenerative. A small number of fibres could be demonstrated that are likely to be 'wrong way ventral afferents'. Their number is falsely low due to wallerian degeneration of dorsal and ventral afferents following the mechanical and ischaemic effects of traction injury. Our findings are the first morphological evidence in human material that Bell-Magendie's law might not entirely be correct and they underline the difficulties in comparing traumatic with experimental rhizotomy.  (+info)

Alternating rhythmic activity induced by dorsal root stimulation in the neonatal rat spinal cord in vitro. (66/960)

Electrical stimuli applied to a single dorsal root (DR) of the neonatal rat spinal cord in vitro were used to test the possibility that the central pattern generator responsible for locomotion could be activated by synaptic inputs. Brief pulse trains evoked oscillatory patterns recorded from pairs of lumbar ventral roots. These patterns alternated rhythmically between the left and right sides and between predominantly flexor and extensor motoneuronal pools on the same side, thus displaying properties similar to the fictive locomotor pattern elicited by bath-applied excitatory transmitter agonists like NMDA and serotonin. Usually pulse trains rather than single pulses were necessary to induce these patterns, the period of which was independent of stimulation frequency (1-10 Hz) and only moderately dependent on stimulus intensity. Patterns reached a steady rhythm during the stimulus train, lasted for 50 +/- 20 s with gradual period lengthening and finally ceased. Since DR stimuli activated the central pattern generator for locomotion in the rat isolated spinal cord, it is suggested that sensory inputs from the periphery can reach the spinal locomotor network and trigger its operation.  (+info)

Increased neuromuscular activity reduces sprouting in partially denervated muscles. (67/960)

The effects of increasing neural activity on sprouting remain unclear and controversial. In a rat model of partial denervation of skeletal muscles, we investigated the effect of neuromuscular activity on sprouting. Rat hindlimb muscles were partially denervated by avulsion of either L4 or L5 spinal root. Immediately after partial denervation, the rats were divided into three groups: (1) normal caged activity, (2) running exercise on wheels, 8 hr daily, and (3) functional electrical stimulation (FES) of sciatic nerves, 20 Hz for 8 hr daily. At 1 month, muscle unit (MU) enlargement was quantitated electrophysiologically and histochemically. MU twitch force was increased by four- to fivefold by partial denervation in extensively denervated tibialis anterior (TA) and medial gastrocnemius (MG) and by approximately twofold in moderately denervated plantaris (PL) and soleus (SOL). For the extensively denervated TA and MG muscles, MU enlargement, measured electrophysiologically, declined significantly after an average of 1757 +/- 310 m/d running exercise and daily FES for 1 month. The detrimental effects on MU enlargement were much less but significant in the moderately denervated PL and did not reach statistical significance in the moderately denervated SOL muscle. Histochemical evaluation of sprouting showed a reduction in the number of sprouts in the extensively denervated TA muscle, but not the moderately denervated PL and SOL muscles, by increased neuromuscular activity. Thus, increased neuromuscular activity is detrimental primarily in muscles that are extensively denervated, and the MUs are smaller than under conditions in which the muscles experience normal physiological levels of activation.  (+info)

Dorsal horn administration of muscimol abolishes the muscle pressor reflex. (68/960)

The purpose of this study was to determine the effect of blocking synaptic transmission in the dorsal horn on the cardiovascular responses produced by activation of muscle afferent neurons. Synaptic transmission was blocked by applying the GABA(A) agonist muscimol to the dorsal surface of the spinal cord. Cats were anesthetized with alpha-chloralose and urethane, and a laminectomy was performed. With the exception of the L(7) dorsal root, the dorsal and ventral roots from L(5) to S(2) were sectioned on one side, and static contraction of the ipsilateral triceps surae muscle was evoked by electrically stimulating the peripheral ends of the L(7) and S(1) ventral roots. The dorsal surface of the L(4)--S(3) segments of the spinal cord were enclosed within a "well" created by applying layers of vinyl polysiloxane. Administration of a 1 mM solution of muscimol (based on dose-response data) into this well abolished the reflex pressor response to contraction (change in mean arterial blood pressure before was 47 +/- 7 mmHg and after muscimol was 3 +/- 2 mmHg). Muscle stretch increased mean arterial blood pressure by 30 +/- 8 mmHg before muscimol, but after drug application stretch increased MAP by only 3 +/- 2 mmHg. Limiting muscimol to the L(7) segment attenuated the pressor responses to contraction (37 +/- 7 to 24 +/- 11 mmHg) and stretch (28 +/- 2 to 16 +/- 8 mmHg). These data suggest that the dorsal horn of the spinal cord contains an obligatory synapse for the pressor reflex. Furthermore, these data support the hypothesis that branches of primary afferent neurons, not intraspinal pathways, are responsible for the multisegmental integration of the pressor reflex.  (+info)

Division of C8 nerve root for treatment of spastic cerebral palsy in the upper limbs: a preliminary report. (69/960)

OBJECTIVE: To investigate the effect of C8 nerve root division on the treatment of spastic cerebral palsy in the upper limbs. METHODS: Two patients were treated with division of the C8 never root. Supraclavicular incision was made to expose the C5-T1 nerve roots. The intraoperative electromyographic recording technique was used to monitor the responses from the flexor digitorum and flexor carpi ulnaris muscle groups simultaneously. The C5-T1 nerve roots were stimulated and the evoked muscle amplitude potentials (EMAP) were recorded from the muscle groups. The EMAP of the muscle groups obtained during electrical stimulation of the C8 nerve root was the largest, which was used as the basis for C8 nerve root division. RESULTS: Division of the C8 nerve root slightly affected the function of the upper limb, and reduced the muscle tone of the flexor wrist and digitorum. CONCLUSION: Division of the C8 nerve root can reduce the muscle tone of the flexor wrist and digitorum in a short time. The long-term effects need to be followed up further.  (+info)

CB1 receptor localization in rat spinal cord and roots, dorsal root ganglion, and peripheral nerve. (70/960)

AIM: The localization of CB1 receptors in the spinal cord, spinal roots, dorsal root ganglion (DRG), and peripheral nerve of the rat was determined. METHODS: We studied the distribution of CB1 cannabinoid receptors by immunohistochemistry using an antibody raised against the N-terminal of the receptor. RESULTS: The spinal cord showed numerous transverse fibers labelled for CB1 receptors throughout and concentrated in the dorsal horn. Lightly-stained cells were observed throughout the spinal cord gray matter. The DRG also showed cells and fibers labelled for CB1 receptors. Labelled fibers were observed in both dorsal and ventral roots as well as in peripheral nerves. CONCLUSION: The presence of CB1 receptors in the DRG, the dorsal root, and the dorsal horn is in accordance with the analgesic effects of cannabinoids. The presence of labelled cells and fibers in the ventral horn and ventral root provides a substrate for cannabinoid-induced muscle relaxant and antispastic effects.  (+info)

The role of macrophages in demyelinating peripheral nervous system of mice heterozygously deficient in p0. (71/960)

Mice heterozygously deficient in the p0 gene (P0(+/-)) are animal models for some forms of inherited neuropathies. They display a progressive demyelinating phenotype in motor nerves, accompanied by mild infiltration of lymphocytes and increase in macrophages. We have shown previously that the T lymphocytes are instrumental in the demyelination process. This study addresses the functional role of the macrophage in this monogenic myelin disorder. In motor nerves of P0(+/)- mice, the number of macrophages in demyelinated peripheral nerves was increased by a factor of five when compared with motor nerves of wild-type mice. Immunoelectron microscopy, using a specific marker for mouse macrophages, displayed macrophages not only in the endoneurium of the myelin mutants, but also within endoneurial tubes, suggesting an active role in demyelination. To elucidate the roles of the macrophages, we crossbred the myelin mutants with a spontaneous mouse mutant deficient in macrophage colony-stimulating factor (M-CSF), hence displaying impaired macrophage activation. In the P0-deficient double mutants also deficient in M-CSF, the numbers of macrophages were not elevated in the demyelinating motor nerves and demyelination was less severe. These findings demonstrate an active role of macrophages during pathogenesis of inherited demyelination with putative impact on future treatment strategies.  (+info)

Lumbar pedicle: surgical anatomic evaluation and relationships. (72/960)

Although several clinical applications of transpedicular screw fixation in the lumbar spine have been documented for many years, few anatomic studies concerning the lumbar pedicle and adjacent neural structures have been published. The lumbar pedicle and its relationships to adjacent neural structures were investigated through an anatomic study. Our objective is to highlight important considerations in performing transpedicular screw fixation in the lumbar spine. Twenty cadavers were used for observation of the lumbar pedicle and its relations. After removal of whole posterior bony elements including spinous processes, laminae, lateral masses, and inferior and superior facets, the isthmus of the pedicle was exposed. Pedicle width and height (PW and PH), interpedicular distance (IPD), pedicle-inferior nerve root distance (PIRD), pedicle-superior nerve root distance (PSRD), pedicle-dural sac distance (PDSD), root exit angle (REA), and nerve root diameter (NRD) were measured. The results indicated that the average distance from the lumbar pedicle to the adjacent nerve roots superiorly, inferiorly and to the dural sac medially at all levels ranged from 2.9 to 6.2 mm, 0.8 to 2.8 mm, and 0.9 to 2.1 mm, respectively. The mean PH and PW at L1-L5 ranged from 10.4 to 18.2 mm and 5.9 to 23.8 mm, respectively. The IPD gradually increased from L1 to L5. The mean REA increased consistently from 35 degrees to 39 degrees. The NRD was between 3.3 and 3.9 mm. Levels of significance were shown for the P < 0.05 and P < 0.01 levels. On the basis of this study, we can say that improper placement of the pedicle screw medially and inferiorly should be avoided.  (+info)