EPR spin trapping and 2-deoxyribose degradation studies of the effect of pyridoxal isonicotinoyl hydrazone (PIH) on *OH formation by the Fenton reaction. (1/163)

The search for effective iron chelating agents was primarily driven by the need to treat iron-loading refractory anemias such as beta-thalassemia major. However, there is a potential for therapeutic use of iron chelators in non-iron overload conditions. Iron can, under appropriate conditions, catalyze the production of toxic oxygen radicals which have been implicated in numerous pathologies and, hence, iron chelators may be useful as inhibitors of free radical-mediated tissue damage. We have developed the orally effective iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and demonstrated that it inhibits iron-mediated oxyradical formation and their effects (e.g. 2-deoxyribose oxidative degradation, lipid peroxidation and plasmid DNA breaks). In this study we further characterized the mechanism of the antioxidant action of PIH and some of its analogs against *OH formation from the Fenton reaction. Using electron paramagnetic resonance (EPR) with 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap for *OH we showed that PIH and salicylaldehyde isonicotinoyl hydrazone (SIH) inhibited Fe(II)-dependent production of *OH from H2O2. Moreover, PIH protected 2-deoxyribose against oxidative degradation induced by Fe(II) and H2O2. The protective effect of PIH against both DMPO hydroxylation and 2-deoxyribose degradation was inversely proportional to Fe(II) concentration. However, PIH did not change the primary products of the Fenton reaction as indicated by EPR experiments on *OH-mediated ethanol radical formation. Furthermore, PIH dramatically enhanced the rate of Fe(II) oxidation to Fe(III) in the presence of oxygen, suggesting that PIH decreases the concentration of Fe(II) available for the Fenton reaction. These results suggest that PIH and SIH deserve further investigation as inhibitors of free-radical mediated tissue damage.  (+info)

Spin trapping of nitric oxide by ferro-chelates: kinetic and in vivo pharmacokinetic studies. (2/163)

Biologically generated nitric oxide appears to play a pivotal role in the control of a diverse series of physiologic functions. Iron-chelates and low-frequency EPR spectroscopy have been used to verify in vivo production of nitric oxide. The interpretation of in vivo identification of nitric oxide localized at the site of evolution in real time is complicated by the varied kinetics of secretion. The quantitative efficiency of the spectroscopic measurement, so important in understanding the physiology of nitric oxide, remains elusive. The development of a more stable iron-chelate will help better define nitric oxide physiology. In this report, we present data comparing the commonly used ferro-di(N-methyl-D-glucamine-dithiocarbamate) (Fe2+(MGD)2) and the novel chelate ferro-di(N-(dithiocarboxy)sarcosine) (Fe2+(DTCS)2) quantifying the in vitro and in vivo stability of the corresponding spin trapped adducts, NO-Fe(MGD)2 and NO-Fe(DTCS)2. Finally, very low frequency EPR spectroscopy has been used to evaluate the pharmacokinetics of NO-Fe(MGD)2 and NO-Fe(DTCS)2 in mice in real time.  (+info)

Induction of nitric oxide synthase and dual effects of nitric oxide and cyclooxygenase products in regulation of arterial contraction in human septic shock. (3/163)

BACKGROUND: The role of endogenous nitric oxide (NO) and cyclooxygenase metabolites was investigated in contractile responses of small omental arteries from patients with hyperdynamic septic shock. METHODS AND RESULTS: Expression of inducible NO synthase (immunostaining) and a high but variable level of NO production (NO spin trapping) was detected in arteries from patients with septic shock. In these vessels, ex vivo contractile responses to the thromboxane A2 analogue U46619 and to low concentrations of norepinephrine (NE) (up to 10 micromol/L) were not significantly different from controls. However, higher concentrations of NE caused pronounced fading of contraction in septic but not in nonseptic arteries. Exposure to either the NO synthase inhibitor NG-nitro-L-arginine methyl ester or the cyclooxygenase inhibitor indomethacin had no effect in control vessels. However, both inhibitors increased the response to the contractile effects of the 2 agonists only in patients with septic shock. In contrast to NG-nitro-L-arginine methyl ester, which decreased the threshold concentration of the fading effect of NE, indomethacin abolished this effect in arteries from septic patients. CONCLUSIONS: These results provide direct evidence for the induction of NO synthase in small arteries from patients with septic shock. They suggest that in these arteries, increased production of NO, in conjunction with vasodilatory cyclooxygenase metabolites, contributes to counteract hyperreactivity to agonists and decreases the cyclooxygenase product-mediated pronounced fading of contraction caused by a high concentration of NE.  (+info)

Spin-trapping agent alpha-phenyl N-tert-butylnitrone binds to trypsin and enhances heparin-induced inhibition of amidolytic activity and structural degradation of the enzyme. (4/163)

The effects of heparin on trypsin have recently been demonstrated to involve inhibition of catalytic activity and degradation of the enzyme by means of an oxidative mechanism. The possibility that alpha-phenyl N-tert-butylnitrone protects heparin-induced radical formation on trypsin was investigated by measuring amidolytic activity and changes in the structure of trypsin in the presence of heparin with and without alpha-phenyl N-tert-butylnitrone. The results show that alpha-phenyl N-tert-butylnitrone does not only prevent, but it even significantly enhances effects of heparin on the enzyme. This is due to the unique property of alpha-phenyl N-tert-butylnitrone, independently of spin-trapping capacity, to modify the trypsin structure by binding irreversibly to the catalytic triad, at sites distinct from those to which heparin binds.  (+info)

Amiodarone protects cardiac myocytes against oxidative injury by its free radical scavenging action. (5/163)

BACKGROUND: Oxidative stress plays an important role in the pathophysiology of ischemic heart disease and heart failure, and antioxidants might be beneficial in the treatment of these patients. This study was performed to determine the scavenging effects of amiodarone on oxygen free radicals and its protective effects against oxygen radical-mediated injury in cardiac myocytes. METHODS AND RESULTS: The formation of the radical spin adduct with hydroxy radical (.OH) in the presence of H(2)O(2) (10 mmol/L) and Fe(3+)-nitrilotriacetate (20 micromol/L) was monitored by electron paramagnetic resonance spectroscopy combined with a spin trapping agent, 5,5-dimethyl pyrroline-N-oxide (DMPO). Amiodarone decreased the intensity of the DMPO-OH signals in a dose-dependent manner (0.1 to 100 micromol/L), whereas other antiarrhythmia drugs such as disopyramide and atenolol had no such effects. Furthermore, amiodarone (10 micromol/L) protected intact adult canine cardiac myocytes against.OH-mediated myocyte injury, as assessed by the degree of morphological change from rod shape to the irreversible hypercontracture state during the exposure of cells to H(2)O(2) and Fe(3+) in vitro. CONCLUSIONS: Amiodarone can protect cardiac myocytes against oxidative stress-mediated injury by directly scavenging oxygen free radicals. Antioxidant action of amiodarone might potentially contribute to the beneficial effects of this drug in the treatment of patients with ischemic heart disease and congestive heart failure.  (+info)

Electron spin resonance investigation of the cyanyl and azidyl radical formation by cytochrome c oxidase. (6/163)

Cyanide (CN(-)) is a frequently used inhibitor of mitochondrial respiration due to its binding to the ferric heme a(3) of cytochrome c oxidase (CcO). As-isolated CcO oxidized cyanide to the cyanyl radical ((.)CN) that was detected, using the ESR spin-trapping technique, as the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/(.)CN radical adduct. The enzymatic conversion of cyanide to the cyanyl radical by CcO was time-dependent but not affected by azide (N(3)(-)). The small but variable amounts of compound P present in the as-isolated CcO accounted for this one-electron oxidation of cyanide to the cyanyl radical. In contrast, as-isolated CcO exhibited little ability to catalyze the oxidation of azide, presumably because of azide's lower affinity for the CcO. However, the DMPO/(.)N(3) radical adduct was readily detected when H(2)O(2) was included in the system. The results presented here indicate the need to re-evaluate oxidative stress in mitochondria "chemical hypoxia" induced by cyanide or azide to account for the presence of highly reactive free radicals.  (+info)

Triggering role of nitric oxide in the delayed protective effect of monophosphoryl lipid A in rat heart. (7/163)

1. The main objective of the present study was to further evaluate the role of nitric oxide (NO) in delayed cardiac protection against ischaemia-reperfusion injury induced by monophosphoryl lipid A (MLA). 2. For this purpose, rats were administered with either 0.5 or 2.5 mg kg(-1) MLA (i.p.). Eight or 24 h later, in vivo NO production in the heart was analysed by electron paramagnetic resonance (EPR) spin trapping technique. In parallel experiments, hearts were removed and perfused according to Langendorff. Functional ventricular parameters and incidence of ventricular fibrillation (VF) were determined after 30 min global ischaemic insult (37 degrees C) followed by 30 min reperfusion. Vascular reactivity of aortic rings was also assessed. 3. Hearts from rats pretreated with 2.5 mg kg(-1) MLA for 24 h (but not those from rats treated with 0.5 mg kg(-1) MLA for 8 and 24 h, or with 2.5 mg kg(-1) MLA for 8 h) exhibited preservation of ventricular function (LVDP, +/-dP/dtmax) and a reduced incidence of VF (25% vs 87.5% in vehicle control) during reperfusion. At the cardioprotective dose of 2.5 mg kg(-1) (for 8 or 24 h), MLA did not produce alterations of the contractile response of aortic rings to noradrenaline. 4. An increased formation of NO was detected in hearts removed from rats pretreated with 2.5 mg kg(-1) MLA for 8 h, but not in those from rats treated for 24 h (or with 0.5 mg kg(-1) MLA). 5. Pretreatment of the animals with the inhibitors of inducible NO-synthase, aminoguanidine (2x300 mg kg(-1)) or L-N6-(1-Iminoethyl)-lysine (L-NIL, 10 mg kg(-1)) abolished both MLA (2. 5 mg kg(-1))-induced rise of NO production (observed 8 h after MLA) and cardioprotection (observed 24 h after MLA). However MLA-induced cardioprotection was not attenuated when the hearts were perfused with aminoguanidine (150 microM) for 30 min before the ischaemic insult. 6. Altogether, the present data suggest that NO acts as a trigger rather then a direct mediator of the delayed cardioprotective effect of MLA in rat heart.  (+info)

Role of neuronal and endothelial nitric oxide synthase in nitric oxide generation in the brain following cerebral ischemia. (8/163)

Nitric oxide (NO) plays an important role in the pathogenesis of neuronal injury during cerebral ischemia. The endothelial and neuronal isoforms of nitric oxide synthase (eNOS, nNOS) generate NO, but NO generation from these two isoforms can have opposing roles in the process of ischemic injury. While increased NO production from nNOS in neurons can cause neuronal injury, endothelial NO production from eNOS can decrease ischemic injury by inducing vasodilation. However, the relative magnitude and time course of NO generation from each isoform during cerebral ischemia has not been previously determined. Therefore, electron paramagnetic resonance spectroscopy was applied to directly detect NO in the brain of mice in the basal state and following global cerebral ischemia induced by cardiac arrest. The relative amount of NO derived from eNOS and nNOS was accessed using transgenic eNOS(-/-) or nNOS(-/-) mice and matched wild-type control mice. NO was trapped using Fe(II)-diethyldithiocarbamate. In wild-type mice, only small NO signals were seen prior to ischemia, but after 10 to 20 min of ischemia the signals increased more than 4-fold. This NO generation was inhibited more than 70% by NOS inhibition. In either nNOS(-/-) or eNOS(-/-) mice before ischemia, NO generation was decreased about 50% compared to that in wild-type mice. Following the onset of ischemia a rapid increase in NO occurred in nNOS(-/-) mice peaking after only 10 min. The production of NO in the eNOS(-/-) mice paralleled that in the wild type with a progressive increase over 20 min, suggesting progressive accumulation of NO from nNOS following the onset of ischemia. NOS activity measurements demonstrated that eNOS(-/-) and nNOS(-/-) brains had 90% and < 10%, respectively, of the activity measured in wild type. Thus, while eNOS contributes only a fraction of total brain NOS activity, during the early minutes of cerebral ischemia prominent NO generation from this isoform occurs, confirming its importance in modulating the process of ischemic injury.  (+info)