The structure of spider toxin huwentoxin-II with unique disulfide linkage: evidence for structural evolution. (73/629)

The three-dimensional structure of huwentoxin-II (HWTX-II), an insecticidal peptide purified from the venom of spider Selenocosmia huwena with a unique disulfide bond linkage as I-III, II-V, and IV-VI, has been determined using 2D (1)H-NMR. The resulting structure of HWTX-II contains two beta-turns (C4-S7 and K24-W27) and a double-stranded antiparallel beta-sheet (W27-C29 and C34-K36). Although the C-terminal double-stranded beta-sheet cross-linked by two disulfide bonds (II-V and IV-VI in HWTX-II, II-V and III-VI in the ICK molecules) is conserved both in HWTX-II and the ICK molecules, the structure of HWTX-II is unexpected absence of the cystine knot because of its unique disulfide linkage. It suggests that HWTX-II adopts a novel scaffold different from the ICK motif that is adopted by all other spider toxin structures elucidated thus far. Furthermore, the structure of HWTX-II, which conforms to the disulfide-directed beta-hairpin (DDH) motif, not only supports the hypothesis that the ICK is a minor elaboration of the more ancestral DDH motif but also suggests that HWTX-II may have evolved from the same structural ancestor.  (+info)

Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). (74/629)

A new family of antimicrobial peptides was isolated from the venom of Cupiennius salei. The peptides were purified to homogeneity, and the sequence of cupiennin 1a was determined by Edman degradation: GFGALFKFLAKKVAKTVAKQAAKQGAKYVVNKQME-NH(2). The amino acid sequences of cupiennin 1b, c, and d were obtained by a combination of sequence analysis and mass spectrometric measurements of comparative tryptic peptide mapping. All peptides consist of 35 amino acid residues and are characterized by a more hydrophobic N-terminal chain region and a C terminus composed preferentially of polar and charged residues. The total charge of all cupiennins calculated under physiological conditions is +8, and their C terminus, formed by a glutamic acid residue, is amidated. Conformational studies of the peptides revealed a high helix forming potential. Antimicrobial assays on bacteria with cupiennin 1a, 1d, and synthesized cupiennins 1a* and 1d* showed minimal inhibitory concentrations for bacteria in the submicromolar range. Their lytic effect on human red blood cells was lower by a factor of 8 to 14 than the highly hemolytic melittin. Cupiennin 1a, 1b, 1d, 1a*, and 1d* showed pronounced insecticidal activity. The immediate biological effects and the structural properties of the isolated cupiennins indicate a membrane-destroying mode of action on prokaryotic as well as eukaryotic cells.  (+info)

Dopamine modulates exocytosis independent of Ca(2+) entry in melanotropic cells. (75/629)

Dopamine is a known inhibitor of pituitary melanotropic cells. It reduces Ca(2+) influx by hyperpolarizing the cell membrane and by modulating high- and low-voltage-activated (HVA and LVA) Ca(2+) channels. As a result, dopamine reduces the hormonal output of the cell. However, it is unknown how dopamine affects each of the four different HVA Ca(2+) channel types individually. Moreover, it is unknown whether dopamine interacts with exocytosis independent of Ca(2+) channels. Here we show that dopamine differentially modulates the HVA Ca(2+) channels and that it affects the stimulus-secretion coupling through a direct effect on the exocytotic machinery. Sustained L- and P-type Ba(2+) currents are reduced in amplitude and inactivating N- and Q-type currents acquire different activation and inactivation kinetics in the presence of dopamine. The Q-type current shows slow activation, which is a hallmark for direct G-protein modulation. We used membrane capacitance measurements to monitor exocytosis. Surprisingly, we find that the amount of exocytosis per step depolarization is not diminished by dopamine despite the reduction in Ca(2+) current. To test whether dopamine affects the release machinery downstream of Ca(2+) entry, we stimulated exocytosis by dialyzing cells with buffered high-Ca(2+) solutions. Dopamine increased the amount and the rate of exocytosis. In the first 90 s, the rate of secretion was increased two- to threefold, but it was normalized again at 180 s, suggesting that predominantly vesicles that fuse early in the exocytotic phase are modulated by dopamine. Thus while Ca(2+) channels are inhibited by dopamine, the exocytotic machinery downstream of Ca(2+) influx is sensitized. As a result, release is more effectively stimulated by Ca(2+) influx during dopamine inhibition.  (+info)

Variations in receptor site-3 on rat brain and insect sodium channels highlighted by binding of a funnel-web spider delta-atracotoxin. (76/629)

Delta-atracotoxins (delta-ACTXs) from Australian funnel-web spiders differ structurally from scorpion alpha-toxins (Sc(alpha)Tx) but similarly slow sodium current inactivation and compete for their binding to sodium channels at receptor site-3. Characterization of the binding of 125I-labelled delta-ACTX-Hv1a to various sodium channels reveals a decrease in affinity for depolarized (0 mV; Kd=6.5 +/- 1.4 nm) vs.polarized (-55 mV; Kd=0.6 +/- 0.2 nm) rat brain synaptosomes. The increased Kd under depolarized conditions correlates with a 4.3-fold reduction in the association rate and a 1.8-increase in the dissociation rate. In comparison, Sc(alpha)Tx binding affinity decreased 33-fold under depolarized conditions due to a 48-fold reduction in the association rate. The binding of 125I-labelled delta-ACTX-Hv1a to rat brain synaptosomes is inhibited competitively by classical Sc(alpha)Txs and allosterically by brevetoxin-1, similar to Sc(alpha)Tx binding. However, in contrast with classical Sc(alpha)Txs, 125I-labelled delta-ACTX-Hv1a binds with high affinity to cockroach Na+ channels (Kd=0.42 +/- 0.1 nm) and is displaced by the Sc(alpha)Tx, Lqh(alpha)IT, a well-defined ligand of insect sodium channel receptor site-3. However, delta-ACTX-Hv1a exhibits a surprisingly low binding affinity to locust sodium channels. Thus, unlike Sc(alpha)Txs, which are capable of differentiating between mammalian and insect sodium channels, delta-ACTXs differentiate between various insect sodium channels but bind with similar high affinity to rat brain and cockroach channels. Structural comparison of delta-ACTX-Hv1a to Sc(alpha)Txs suggests a similar putative bioactive surface but a 'slimmer' overall shape of the spider toxin. A slimmer shape may ease the interaction with the cockroach and mammalian receptor site-3 and facilitate its association with different conformations of the rat brain receptor, correlated with closed/open and slow-inactivated channel states.  (+info)

Reduction of I(to) causes hypertrophy in neonatal rat ventricular myocytes. (77/629)

Prolonged action potential duration (APD) and decreased transient outward K+ current (I(to)) as a result of decreased expression of K(v4.2) and K(v4.3) genes are commonly observed in heart disease. We found that treatment of cultured neonatal rat ventricular myocytes with Heteropoda Toxin3, a blocker of cardiac I(to), induced hypertrophy as measured using cell membrane capacitance and (3)H-leucine uptake. To dissect the role of specific I(to)-encoding genes in hypertrophy, I(to) was selectively reduced by overexpressing mutant dominant-negative (DN) transgenes. I(to) amplitude was reduced equally (by about 50%) by overexpression of DN K(v1.4) (K(v1.4)N) or DN K(v4.2) (either K(v4.2)N or K(v4.2)W362F), but only DN K(v4.2) prolonged APD duration (at 1 Hz) and induced myocyte hypertrophy. This hypertrophy was prevented by coexpressing wild-type K(v4.2) channels (K(v4.2)F) with the DN K(v4.2) genes, suggesting the hypertrophy is due to I(to) reduction and not nonspecific effects of transgene overexpression. The hypertrophy caused by reductions of K(v4.x)-based I(to) was associated with increased activity of the calcium-dependent phosphatase, calcineurin, and could be prevented by coinfection with Ad-CAIN, a specific calcineurin inhibitor. The hypertrophy and calcineurin activation induced by K(v4.2)N infection were prevented by blocking Ca2+ entry and excitability with verapamil or high [K+]o. Our studies suggest that reductions of K(v4.2/3)-based I(to) play a role in hypertrophy signaling by activation of calcineurin.  (+info)

Control of the propagation of dendritic low-threshold Ca(2+) spikes in Purkinje cells from rat cerebellar slice cultures. (78/629)

To investigate the ionic mechanisms controlling the dendrosomatic propagation of low-threshold Ca(2+) spikes (LTS) in Purkinje cells (PCs), somatically evoked discharges of action potentials (APs) were recorded under current-clamp conditions. The whole-cell configuration of the patch-clamp method was used in PCs from rat cerebellar slice cultures. Full blockade of the P/Q-type Ca(2+) current revealed slow but transient depolarizations associated with bursts of fast Na(+) APs. These can occur as a single isolated event at the onset of current injection, or repetitively (i.e. a slow complex burst). The initial transient depolarization was identified as an LTS Blockade of P/Q-type Ca(2+) channels increased the likelihood of recording Ca(2+) spikes at the soma by promoting dendrosomatic propagation. Slow rhythmic depolarizations shared several properties with the LTS (kinetics, activation/inactivation, calcium dependency and dendritic origin), suggesting that they correspond to repetitively activated dendritic LTS, which reach the soma when P/Q channels are blocked. Somatic LTS and slow complex burst activity were also induced by K(+) channel blockers such as TEA (2.5 x 10(-4) M) charybdotoxin (CTX, 10(-5) M), rIberiotoxin (10(-7) M), and 4-aminopyridine (4-AP, 10(-3) M), but not by apamin (10(-4) M). In the presence of 4-AP, slow complex burst activity occurred even at hyperpolarized potentials (-80 mV). In conclusion, we suggest that the propagation of dendritic LTS is controlled directly by 4-AP-sensitive K(+) channels, and indirectly modulated by activation of calcium-activated K(+) (BK) channels via P/Q-mediated Ca(2+) entry. The slow complex burst resembles strikingly the complex spike elicited by climbing fibre stimulation, and we therefore propose, as a hypothesis, that dendrosomatic propagation of the LTS could underlie the complex spike.  (+info)

Endothelium-dependent relaxation of rat mesenteric arterial rings by a Phoneutria nigriventer venom fraction. (79/629)

Phoneutria nigriventer spider venom has been described as acting on several cardiovascular sites. In the present paper, a semi-purified fraction of this spider venom was studied to observe any contractile or relaxing effect in rat mesenteric arterial rings (MAR). Spider venom was first fractionated by gel filtration and subsequently by gradual isocratic steps in 0.1% trifluoroacetic acid. The first fraction of this last fractionation step is studied in the present paper and due to its main effect, it was named NORF (nitric oxide releasing fraction). No direct contractile effect was induced by NORF in relaxed MAR, suggesting no NORF-induced neurotransmitter release in this preparation. No significant influence of NORF was observed on concentration-response curves to phenylephrine on endothelium-denuded MAR, but a significant inhibitory shift of concentration-respense curves was observed on endothelium-preserved MAR (EC50 = 0.39 +/- 0.07 microM for control and EC50 = 0.68 +/- 0.14 microM with NORF). NORF induced concentration-dependent relaxation in endothelium-preserved phenylephrine pre-contracted MAR but not in endothelium-denuded MAR. NORF-induced relaxation was inhibited by the nitric oxide synthase inhibitor L-NAME (N(omega)-nitro-arginine methyl ester). Indomethacin or HOE-140 (D-Arg-[Hyp3,Thi5,D-Tic7,Oic8]-bradykinin) had no significant effect on NORF-induced relaxation. Acetylcholine- and NORF-induced relaxation of pre-contracted MAR were differently inhibited by atropine. The pA2 value for atropine-acetylcholine was 9.78 +/- 0.06 and that for atropine-NORF was 8.53 +/- 0.30 (P<0.01). These observations suggest that NORF induces concentration-dependent liberation of nitric oxide from MAR endothelium and that a non-muscarinic mechanism might be involved in this effect. Our data suggest no involvement of prostanoids or bradykinin in the relaxing mechanism.  (+info)

Interactions among toxins that inhibit N-type and P-type calcium channels. (80/629)

A number of peptide toxins from venoms of spiders and cone snails are high affinity ligands for voltage-gated calcium channels and are useful tools for studying calcium channel function and structure. Using whole-cell recordings from rat sympathetic ganglion and cerebellar Purkinje neurons, we studied toxins that target neuronal N-type (Ca(V)2.2) and P-type (Ca(V)2.1) calcium channels. We asked whether different toxins targeting the same channels bind to the same or different sites on the channel. Five toxins (omega-conotoxin-GVIA, omega-conotoxin MVIIC, omega-agatoxin-IIIA, omega-grammotoxin-SIA, and omega-agatoxin-IVA) were applied in pairwise combinations to either N- or P-type channels. Differences in the characteristics of inhibition, including voltage dependence, reversal kinetics, and fractional inhibition of current, were used to detect additive or mutually occlusive effects of toxins. Results suggest at least two distinct toxin binding sites on the N-type channel and three on the P-type channel. On N-type channels, results are consistent with blockade of the channel pore by omega-CgTx-GVIA, omega-Aga-IIIA, and omega-CTx-MVIIC, whereas grammotoxin likely binds to a separate region coupled to channel gating. omega-Aga-IIIA produces partial channel block by decreasing single-channel conductance. On P-type channels, omega-CTx-MVIIC and omega-Aga-IIIA both likely bind near the mouth of the pore. omega-Aga-IVA and grammotoxin each bind to distinct regions associated with channel gating that do not overlap with the binding region of pore blockers. For both N- and P-type channels, omega-CTx-MVIIC binding produces complete channel block, but is prevented by previous partial channel block by omega-Aga-IIIA, suggesting that omega-CTx-MVIIC binds closer to the external mouth of the pore than does omega-Aga-IIIA.  (+info)