Inward rectification in KATP channels: a pH switch in the pore. (1/1225)

Inward-rectifier potassium channels (Kir channels) stabilize the resting membrane potential and set a threshold for excitation in many types of cell. This function arises from voltage-dependent rectification of these channels due to blockage by intracellular polyamines. In all Kir channels studied to date, the voltage-dependence of rectification is either strong or weak. Here we show that in cardiac as well as in cloned KATP channels (Kir6.2 + sulfonylurea receptor) polyamine-mediated rectification is not fixed but changes with intracellular pH in the physiological range: inward-rectification is prominent at basic pH, while at acidic pH rectification is very weak. The pH-dependence of polyamine block is specific for KATP as shown in experiments with other Kir channels. Systematic mutagenesis revealed a titratable C-terminal histidine residue (H216) in Kir6.2 to be the structural determinant, and electrostatic interaction between this residue and polyamines was shown to be the molecular mechanism underlying pH-dependent rectification. This pH-dependent block of KATP channels may represent a novel and direct link between excitation and intracellular pH.  (+info)

Agmatine modulates polyamine content in hepatocytes by inducing spermidine/spermine acetyltransferase. (2/1225)

Agmatine has been proposed as the physiological ligand for the imidazoline receptors. It is not known whether it is also involved in the homoeostasis of intracellular polyamine content. To show whether this is the case, we have studied the effect of agmatine on rat liver cells, under both periportal and perivenous conditions. It is shown that agmatine modulates intracellular polyamine content through its effect on the synthesis of the limiting enzyme of the interconversion pathway, spermidine/spermine acetyltransferase (SSAT). Increased SSAT activity is accompanied by depletion of spermidine and spermine, and accumulation of putrescine and N1-acetylspermidine. Immunoblotting with a specific polyclonal antiserum confirms the induction. At the same time S-adenosylmethionine decarboxylase activity is significantly increased, while ornithine decarboxylase (ODC) activity and the rate of spermidine uptake are reduced. This is not due to an effect on ODC antizyme, which is not significantly changed. All these modifications are observed in HTC cells also, where they are accompanied by a decrease in proliferation rate. SSAT is also induced by low oxygen tension which mimics perivenous conditions. The effect is synergic with that promoted by agmatine.  (+info)

Transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N1-acetyltransferase show enhanced sensitivity to the polyamine analog, N1, N11-diethylnorspermine. (3/1225)

We have recently generated transgenic mice in which polyamine catabolism has been activated by overexpressing the rate-limiting enzyme of polyamine catabolism, spermidine/spermine N1-acetyltransferase (SSAT). These animals have now been tested for their sensitivity to the polyamine analog N1,N11-diethylnorspermine (DENSPM), which is currently undergoing Phase I clinical trial. The analog is known for its ability to potently induce SSAT. Treatment for 4 days with a daily dose (125 mg/kg) of analog caused profound changes in polyamine metabolism in the transgenic animals. Liver SSAT activity was increased by approximately 800-fold while hepatic mRNA increased only 4-fold. Putrescine pools increased while spermidine and spermine pools nearly disappeared, resulting in a compensatory increase in ornithine decarboxylase activity. Similar but less profound changes were also seen in other tissues (spleen, intestine, and skin). This treatment also resulted in a 50% mortality in the transgenic animals, with no apparent histopathological changes in major organs. Nontransgenic animals exhibited no toxicity, and tissue SSAT activity was unchanged or only moderately increased. Polyamine pools were only slightly altered. Greater analog toxicity in transgenic animals may be attributable to higher tissue levels of DENSPM facilitated by SSAT-mediated decreases in spermidine and spermine. To further confirm the enhanced sensitivity of the transgenic animals to the analog, groups of nontransgenic and transgenic animals were subjected to daily injections with DENSPM. On average, transgenic mice died approximately 3 days earlier than their nontransgenic litter-mates. The findings indicate a contributing role for SSAT in whole animal toxicity by SSAT-inducing polyamine analogs.  (+info)

Polyamine-dependent deoxyribonuclease activity from rat-liver nuclei. (4/1225)

When nuclei isolated from rat liver in a low salt buffer were washed with 0.1 M NaCl solution, the supernatant showed a deoxyribonuclease (DNase) activity. The activity required Mg2+ and in addition spermine or spermidine, and its optimal pH was 7.2-7.4. The activity was higher on denatured (single stranded) DNA than on double-helical DNA. With both substrates the activity was highest at a polyamine concentration at which the DNA-polyamine complex began to precipitate. No Mg2++Ca2+ dependent DNase activity was detected in the preparation.  (+info)

Polyamine biosynthesis inhibitors alter protein-protein interactions involving estrogen receptor in MCF-7 breast cancer cells. (5/1225)

We investigated the effects of polyamine biosynthesis inhibition on the estrogenic signaling pathway of MCF-7 breast cancer cells using a protein-protein interaction system. Estrogen receptor (ER) linked to glutathione-S-transferase (GST) was used to examine the effects of two polyamine biosynthesis inhibitors, difluoromethylornithine (DFMO) and CGP 48664. ER was specifically associated with a 45 kDa protein in control cells. In cells treated with estradiol, nine proteins were associated with ER. Cells treated with polyamine biosynthesis inhibitors in the absence of estradiol retained the binding of their ER with a 45 kDa protein and the ER also showed low-affinity interactions with a number of cellular proteins; however, these associations were decreased by the presence of estradiol and the inhibitors. When samples from the estradiol+DFMO treatment group were incubated with spermidine prior to GST-ER pull down assay, an increased association of several proteins with ER was detected. The intensity of the ER-associated 45 kDa protein increased by 10-fold in the presence of 1000 microM spermidine. These results indicate a specific role for spermidine in ER association of proteins. Western blot analysis of samples eluted from GST-ER showed the presence of chicken ovalbumin upstream promoter-transcription factor, an orphan nuclear receptor, and the endogenous full-length ER. These results show that multiple proteins associate with ER and that the binding of some of these proteins is highly sensitive to intracellular polyamine concentrations. Overall, our results indicate the importance of the polyamine pathway in the gene regulatory function of estradiol in breast cancer cells.  (+info)

Inhibition of polyamine synthesis induces p53 gene expression but not apoptosis. (6/1225)

The nuclear phosphoprotein p53 acts as a transcription factor and is involved in growth inhibition and apoptosis. The present study was designed to examine the effect of decreasing cellular polyamines on p53 gene expression and apoptosis in small intestinal epithelial (IEC-6) cells. Cells were grown in DMEM containing 5% dialyzed fetal bovine serum in the presence or absence of alpha-difluoromethylornithine (DFMO), a specific inhibitor of polyamine biosynthesis, for 4, 6, and 12 days. The cellular polyamines putrescine, spermidine, and spermine in DFMO-treated cells decreased dramatically at 4 days and remained depleted thereafter. Polyamine depletion by DFMO was accompanied by a significant increase in expression of the p53 gene. The p53 mRNA levels increased 4 days after exposure to DFMO, and the maximum increases occurred at 6 and 12 days after exposure. Increased levels of p53 mRNA in DFMO-treated cells were paralleled by increases in p53 protein. Polyamines given together with DFMO completely prevented increased expression of the p53 gene. Increased expression of the p53 gene in DFMO-treated cells was associated with a significant increase in G1 phase growth arrest. In contrast, no features of programmmed cell death were identified after polyamine depletion: no internucleosomal DNA fragmentation was observed, and no morphological features of apoptosis were evident in cells exposed to DFMO for 4, 6, and 12 days. These results indicate that 1) decreasing cellular polyamines increases expression of the p53 gene and 2) activation of p53 gene expression after polyamine depletion does not induce apoptosis in intestinal crypt cells. These findings suggest that increased expression of the p53 gene may play an important role in growth inhibition caused by polyamine depletion.  (+info)

Characterization of the effects of polyamines on [125I]MK-801 binding to recombinant N-methyl-D-aspartate receptors. (7/1225)

The assembly of heterogeneous populations of native N-methyl-D-aspartate receptors results in receptors with multiple pharmacological properties dependent on subunit combinations. Using stably transfected ML(tk-) mouse fibroblasts expressing N-methyl-D-aspartate R1a and either R2A or R2B, we evaluated polyamine effects on [125I]dizocilpine (MK-801) binding to determine subunit-specific pharmacological characteristics. The polyamine agonists spermine and spermidine produced biphasic concentration response curves in rat brain membrane: low concentrations (<100 microM) enhanced [125I]MK-801 binding and higher concentrations (>100 microM) inhibited binding. Polyamine agonists did not affect [125I]MK-801 binding in NR1a/NR2A, whereas spermine and spermidine did produce enhancement, and, at higher concentrations, inhibition of binding in NR1a/NR2B. The polyamine 1,5-(diethylamino)piperidine is thought to be selective for the agonist polyamine site and only enhanced [125I]MK-801 binding in brain membranes (EC50 = 9.6 microM). However, 1,5-(diethylamino)piperidine inhibited [125I]MK-801 binding (IC50 = 8.0 microM) in NR1:NR2A receptors and produced a small increase followed by a modest decrease in binding to NR1a/NR2B receptors. In brain membranes, the polyamine antagonist arcaine inhibited [125I]MK-801 binding (IC50 = 4.6 microM). Similar effects were demonstrated in both NR1:NR2A and NR1:NR2B receptors (IC50 = 8. 4 and 14.1 microM, respectively) and agonists decreased the affinity of arcaine in both receptor preparations. These results suggest that the stimulatory effects of polyamines on recombinant receptors are influenced by the NR2 subunit, and that NR1:NR2A does not contain a positive modulatory site. However, the inhibitory effects of polyamine antagonists are similar in both subunit combinations. Furthermore, native NMDA receptors pharmacology cannot be modeled by simple NR1:NR2A or NR1:NR2B combinations.  (+info)

Sensitivity of spermidine-deficient Saccharomyces cerevisiae to paromomycin. (8/1225)

Spermidine-deficient Saccharomyces cerevisiae cells are much more sensitive to paromomycin than nondeficient cells, resulting in cessation of growth and cell death.  (+info)