Membrane hyperpolarization by sperm-activating and -attracting factor increases cAMP level and activates sperm motility in the ascidian Ciona intestinalis. (57/2575)

In the ascidian Ciona intestinalis (and C. savignyi), sperm-activating and -attracting factor (SAAF) is released from the egg at fertilization and stimulates both Ca(2+) influx and a transient increase in cAMP level of the sperm, leading to the activation of sperm motility (M. Yoshida et al., 1994, Dev. Growth Differ. 36, 589-595). In this paper we show in C. intestinalis that valinomycin, a potassium-selective ionophore, as well as SAAF, activated sperm motility, and this activation was suppressed by extracellular high K(+). Membrane potential measurements showed that both SAAF and valinomycin increase K(+) permeability of sperm and induce membrane hyperpolarization, the amplitude of which depends on the external K(+) concentration. The membrane potential and intracellular K(+) concentration of Ciona sperm without SAAF were estimated to be about -50 mV and 560 +/- 40 mM, respectively. After treatment with SAAF or valinomycin the membrane potential became almost equal to the equilibrium potential of K(+) (-100 mV), and the cAMP level increased in artificial seawater. A potent voltage-dependent K(+) channel blocker, MCD peptide, at the concentration of 10 microM blocked SAAF-induced hyperpolarization of the cells, increase in cAMP, and sperm motility. These results suggest that membrane hyperpolarization produced by the opening of K(+) channels elevates cAMP synthesis and leads to the activation of sperm motility in Ciona.  (+info)

Effects of Percoll separation, cryoprotective agents, and temperature on plasma membrane permeability characteristics of murine spermatozoa and their relevance to cryopreservation. (58/2575)

Cryopreservation of murine spermatozoa would provide an efficient method for preserving important genotypes. However, to date such methods have resulted in low survivals with significant variability. To address this issue, a series of five experiments was performed to determine the cryobiological characteristics of murine spermatozoa. Experiments 1 and 2 investigated the effect of Percoll separation on the hydraulic conductivity (L(p)) of murine spermatozoa. Both Percoll separation and cryoprotective agents (CPAs) decreased the L(p). However, these effects were not additive. Experiment 3 was performed to determine the effect of temperature on L(p) in the presence of cryoprotectants (L(p)(CPA)), cryoprotectant permeability (P(CPA)), and the reflection coefficient (sigma) in spermatozoa from both ICR and B6C3F1 mice. Permeability parameters decreased as temperature decreased, and permeability characteristics differed between strains. In experiments 4 and 5, theoretical simulations for CPA addition and removal were developed and empirically tested. Strain-specific methods for CPA addition and removal based upon the fundamental cryobiological characteristics of murine spermatozoa resulted in higher survivals than current methods or procedures, which were used as controls.  (+info)

Infertile spermatozoa of c-ros tyrosine kinase receptor knockout mice show flagellar angulation and maturational defects in cell volume regulatory mechanisms. (59/2575)

Homozygous c-ros knockout male mice that lack prepubertal differentiation of the epididymal initial segment are healthy but sterile, despite normal sperm production and mating. Detailed computerized analysis of the motility of spermatozoa maturing in the epididymis revealed only minor defects. However, the majority of motile mature sperm released from the cauda epididymidis showed various extents of flagellar angulation that could not be corrected by raising extracellular osmolality. Measurement of the osmolality of cauda epididymal fluid showed no difference from the wild type. Studies in wild-type mice indicated a maturational change in the ability of motile sperm to maintain straight flagella during incubation, but angulation was induced in cauda sperm by the volume-sensitive ion channel blockers quinine, 5-nitro-2-(3-phenylpropylamino)-benzoic acid and BaCl(2), or by exposure to hypotonic media. Flagellar angulation, induced in the wild type or intrinsic to the knockout, was relieved upon demembranation by Triton X-100, confirming that it was a cell swelling phenomenon. A lack of response of immature wild-type sperm and mature knockout sperm to the channel blockers suggests that there is normally a development of the volume regulatory mechanisms upon maturation that is defective in sperm from the knockout animal. The resultant flagellar angulation may account for the reduction in sperm numbers in the oviduct of mated females and the failure to fertilize in vivo.  (+info)

Seminal vesicle autoantigen, a novel phospholipid-binding protein secreted from luminal epithelium of mouse seminal vesicle, exhibits the ability to suppress mouse sperm motility. (60/2575)

Seminal vesicle autoantigen (SVA) is a 19 kDa glycoprotein purified from mouse seminal vesicle secretion. It was quantified to be 0.9% (w/v) in the seminal vesicle fluid. We examined its distribution in the accessory sexual gland, characterized its binding sites on the sperm surface and assessed its effect on sperm motility. It was immunolocalized on the epithelium of the primary and secondary folds in the tissue. Mouse spermatozoa collected from caudal epididymis were devoid of SVA. A cytochemical study illustrated the presence of SVA-binding region on the entire cells. The cytochemical staining intensity for the binding of SVA to spermatozoa remained even when the cells were pretreated with protease digestion, acid or heat at 100 degrees C for 10 min. Moreover, the SVA-sperm binding could be inhibited by the dispersed sperm lipid. The specificity of interaction between (125)I-SVA and phospholipids was studied by TLC overlay techniques. The radiolabelled protein showed strong binding to purified phosphatidylcholine and phosphatidylserine and weak binding to purified sphingomyelin, lysophosphatidylcholine and phosphatidylethanolamine, but did not interact with phosphatidic acid, lysophosphatidic acid or phosphatidylinositol. Among the lipids extracted from spermatozoa, SVA showed strong binding to phosphatidylcholine and weak binding to sphingomyelin and neutral lipids. The assay for SVA-sperm binding with (125)I-SVA determined the IC(50) as being (3.89+/-0.65)x10(-5) M(-1), which is compatible with an apparent dissociation constant of (9.10+/-0.02)x10(-5) M(-1) estimated by fitting the data of phosphatidylcholine-perturbed SVA fluorescence to a modified Scatchard plot. SVA showed an ability to suppress sperm motility. The average path velocity, straight-line velocity and curvilinear velocity of sperm were not detectable by computer-assisted sperm assay after incubation of the cells in the presence of 0.3% SVA at 37 degrees C for more than 40 min.  (+info)

A fraction of mouse sperm chromatin is organized in nucleosomal hypersensitive domains enriched in retroposon DNA. (61/2575)

We have characterized a nuclease hypersensitive chromatin fraction from murine spermatozoa. Endogenous nuclease activity can be induced in mouse epididymal spermatozoa by appropriate stimuli and cause the localized degradation of chromosomal DNA. Based on these observations, we have isolated nuclease hypersensitive chromatin regions released from spermatozoa in the supernatant of pelleted sperm cells, and have cloned and characterized the DNA. Gel electrophoresis of end-labelled released DNA fragments showed a typical nucleosomal distribution. Peripherally distributed nucleohistones were visualized by immunofluorescence in sperm nuclei, and histones were identified by western blot in sperm chromatin. Moreover, the released DNA is enriched in retroposon DNA from a variety of families. FISH and immunofluorescence analysis showed that retroposon DNA and nucleohistone chromatin co-localize and are both peripherically distributed in nuclei of spermatozoa. In contrast, a major satellite DNA probe, used for control, co-localizes with highly condensed chromatin in the central region of sperm nuclei. The nuclear Ran and RCC1 proteins were also visualized in the dorsal margin of sperm nuclei, and were abundantly released with the hypersensitive chromatin fraction. Together, these results indicate that nucleohistone chromatin fraction(s) with typical features of 'active' chromatin are present in murine spermatozoa, are hypersensitive to nuclease cleavage, enriched in retroposon DNA and organized in nucleosomal domains. These observations suggest that nucleohistone domains identify a fraction of the sperm genome which may be functional during early embryogenesis.  (+info)

Effects of osmolality, morphology perturbations and intracellular nucleotide content during the movement of sea bass (Dicentrarchus labrax) spermatozoa. (62/2575)

Sea bass spermatozoa are maintained immotile in the seminal fluid, but initiate swimming for 45 s at 20 degrees C, immediately after dispersion in a hyperosmotic medium (1100 mOsm kg-1). The duration of this motile period could be extended by a reduction of the amplitude of the hyperosmotic shock. Five seconds after the initiation of motility, 94.4 +/- 1.8% of spermatozoa were motile with a swimming velocity of 141.8 +/- 1.2 microns s-1, a flagellar beat frequency of 60 Hz and a symmetric type of flagellar swimming, resulting in linear tracks. Velocity, flagellar beat frequency, percentage of motile cells and trajectory diameter decreased concomitantly throughout the swimming phase. After 30 s of motility, the flagellar beat became asymmetric, leading to circular trajectories. Ca2+ modulated the swimming pattern of demembranated spermatozoa, suggesting that the asymmetric waves produced by intact spermatozoa after 30 s of motility were induced by an accumulation of intracellular Ca2+. Moreover, increased ionic strength in the reactivation medium induced a dampening of waves in the distal portion of the flagellum and, at high values, resulted in an arrest of wave generation in demembranated spermatozoa. In non-demembranated cells, the intracellular ATP concentration fell immediately after transfer to sea water. In contrast, the AMP content increased during the same period, while the ADP content increased slightly. In addition, several morphological changes affected the mitochondria, chromatin and midpiece. These results indicate that the short swimming period of sea bass spermatozoa is controlled by energetic and cytoplasmic ionic conditions and that it is limited by osmotic stress, which induces marked changes in cell morphology.  (+info)

Toxigenic strains of Bacillus licheniformis related to food poisoning. (63/2575)

Toxin-producing isolates of Bacillus licheniformis were obtained from foods involved in food poisoning incidents, from raw milk, and from industrially produced baby food. The toxin detection method, based on the inhibition of boar spermatozoan motility, has been shown previously to be a sensitive assay for the emetic toxin of Bacillus cereus, cereulide. Cell extracts of the toxigenic B. licheniformis isolates inhibited sperm motility, damaged cell membrane integrity, depleted cellular ATP, and swelled the acrosome, but no mitochondrial damage was observed. The responsible agent from the B. licheniformis isolates was partially purified. It showed physicochemical properties similar to those of cereulide, despite having very different biological activity. The toxic agent was nonproteinaceous; soluble in 50 and 100% methanol; and insensitive to heat, protease, and acid or alkali and of a molecular mass smaller than 10,000 g mol(-1). The toxic B. licheniformis isolates inhibited growth of Corynebacterium renale DSM 20688(T), but not all inhibitory isolates were sperm toxic. The food poisoning-related isolates were beta-hemolytic, grew anaerobically and at 55 degrees C but not at 10 degrees C, and were nondistinguishable from the type strain of B. licheniformis, DSM 13(T), by a broad spectrum of biochemical tests. Ribotyping revealed more diversity; the toxin producers were divided among four ribotypes when cut with PvuII and among six when cut with EcoRI, but many of the ribotypes also contained nontoxigenic isolates. When ribotyped with PvuII, most toxin-producing isolates shared bands at 2.8 +/- 0.2, 4.9 +/- 0.3, and 11.7 +/- 0.5 or 13.1 +/- 0.8 kb.  (+info)

An important role of actin polymerization in the human zona pellucida-induced acrosome reaction. (64/2575)

The effects of inhibitors of actin polymerization and depolymerization, cytochalasins and phalloidin, on the human zona pellucida (ZP)-induced acrosome reaction (AR) were investigated. Motile spermatozoa, selected by swim-up technique from normozoospermic men, were incubated in medium with or without the actin modulators. Oocytes (four per test) which had failed to fertilize in vitro were added and incubation continued for 2 h. The spermatozoa bound to the ZP were dislodged by repeatedly aspirating the oocytes with a small-bore pipette and the status of the acrosomes was determined by fluorescein-labelled Pisum sativum agglutinin (PSA). Double immunofluorescent staining with PSA and an anti-actin monoclonal antibody illuminated the acrosomal region of acrosome-intact spermatozoa. In calcium ionophore-induced AR spermatozoa, actin staining was confined to the equatorial segment, post-acrosomal region and tail. Cytochalasins B and D significantly inhibited ZP-induced AR in a dose-dependent manner (P < 0.001). Both inhibitors had no effect on the acrosome of spermatozoa in the insemination medium. Cytochalasin B or D (10-40 micromol/l) had no effect on total percentage motile spermatozoa but decreased sperm velocity and hyperactivation. Phalloidin had no effect on the ZP-induced AR or sperm motility. In conclusion, actin polymerization plays an important role in human ZP-induced AR.  (+info)