Five-coordinate iron-porphyrin as a model for the active site of hemoproteins. Characterization and coordination properties. (25/8806)

Preparation of iron(III)-deuteroporphyrin 6(7)-methyl ester, 7(6)-(histidine methyl ester) by coupling histidine methyl ester to deuterohemin has been performed using the mixed carboxylic/carbonic-acid-anhydride method. This compound, which is very soluble in various organic solvents, can be considered as a prosthetic group model for the active site of five-coordinate hemoproteins. In the oxidized state a basic, a neutral or an acid form can be isolated. The basic and acid forms are monomeric at all concentrations. The neutral form is found dimeric in concentrated solutions while it is monomeric at low concentration. The coordination state of iron in these various species is investigated. The neutral form reacts with ligands, such as nitrogenous organic bases, leading to six-coordinate well-known hemichromes which exhibit low-spin electron spin resonance (ESR) spectra. The reaction of anionic ligands, such as F-, CN-, NO-2 and N-3, with the neutral form model leads to unsymmetrical six-coordinate complexes whose optical and ESR spectra are similar to those of synthetic deuteromyoglobin. In benzene, toluene or dichloromethane solutions iron (II)-deuteroporphyrin 6(7)-methyl ester, 7(6)-histidine methyl ester), obtained from ferric forms by heterogeneous reduction with aqueous dithionite, exhibits an optical spectrum characteristic of a five-coordinate high-spin ferrous complex. At low temperature important spectral modifications are observed indicating a dimeric association. At room temperature it binds one nitrogenous base molecule leading to the well-known hemochrome. It reacts also with carbon monoxide with a very high affinity constant (4.5 X 10(8) M-1), comparable to that of the isolated human hemoglobin alpha and beta chains, but much higher than the values reported for other various models, suggesting that the side-chain length bearing the fifth ligand may have an important influence upon the reactivity of the sixth position of the iron ion. At low temperature in toluene or dichloromethane, this compound reversibly binds oxygen without oxidation of the iron ion while oxidation occurs at room temperature. The significance of these results is discussed in relation with the local environment, the electronic nature of the base and the immobilization of the heme group in hemoproteins.  (+info)

Site-directed mutagenesis of a possible type 1 copper ligand of bilirubin oxidase; a Met467Gln mutant shows stellacyanin-like properties. (26/8806)

In our previous paper, we reported a mutant of recombinant Myrothecium verrucaria bilirubin oxidase, in which the Met467 residue was replaced by Gly [Shimizu, A. et al. (1999) Biochemistry 38, 3034-3042]. This mutant displayed a remarkable reduction in enzymatic activity and an evident decrease in the intensity of the absorption band around 600 nm (type 1 charge transfer transition). In this study, we report the preparation of three Met467 mutants (Met467Gln, Met467His, and Met467Arg) and characterize their enzymatic activities, midpoint potentials, and absorption and ESR spectra. Met467His and Met467Arg show no enzymatic activity and a great reduction in the intensity of the absorption band around 600 nm. Furthermore, their ESR spectra show no type 1 copper signal, but only a type 2 copper signal; however, oxidation by ferricyanide caused the type 1 copper signal to appear. On the other hand, Met467Gln as expressed shows both type 1 and type 2 copper signals in its ESR spectrum, the type 1 copper atom parameters being very different from usual blue copper proteins but very similar to those of stellacyanin. The enzymatic activity of the Met467Gln mutant for bilirubin is quite low (0.3%), but the activity for potassium ferrocyanide is similar (130%) to that of the wild type enzyme. These results indicate that Met467 is important for characterizing the features of the type 1 copper of bilirubin oxidase.  (+info)

Interaction of purified human proteinase 3 (PR3) with reconstituted lipid bilayers. (27/8806)

Proteinase 3 (PR3), the major target autoantigen in Wegener's granulomatosis is a serine proteinase that is normally stored intracellularly in the primary granules of quiescent neutrophils and monocytes. Upon cell activation, a significant portion of this antigen is detected on the cell surface membrane. The nature of the association of PR3 with the membrane and its functional significance are unknown. We investigated the interaction of purified human PR3 with mixtures of zwitterionic (dimyristoyl-L-alpha-phosphatidylcholine, DMPC) and anionic (dimyristoyl-L-alpha-phosphatidylglycerol, DMPG) phospholipids in reconstituted lipid bilayers using differential scanning calorimetry and lipid photolabeling, and measured the affinity of this interaction using spectrophotometry. Two other primary granule constituents, human neutrophil elastase (HNE) and myeloperoxidase (MPO) were investigated for comparison. In calorimetric assays, using lipid vesicles of mixed DMPC/DMPG, increasing PR3 concentrations (protein/lipid molar ratio from 0 to 1 : 110) induced a significant decrease of the main chain transition enthalpy and a shift in chain melting temperatures which is indicative of partial insertion of PR3 into the hydrophobic region of the lipid membranes. This was confirmed by hydrophobic photolabeling using liposomes containing trace amounts of the photoactivable [125I]-labeled phosphatidylcholine analog TID-PC/16. The molar affinity of PR3, HNE, and MPO to lipid vesicles of different DMPC/DMPG ratios was then determined by spectrophotometry. At a DMPC/DMPG ratio of 1 : 1, molar affinities of PR3, Kd = 4.5 +/- 0.3 microm; HNE, 14.5 +/- 1.2 microm; and MPO, 50 +/- 5 microm (n = 3) were estimated. The lipid-associated PR3 exhibited two-fold lower Vmax and Km values, and its enzyme activity was slightly more inhibited (Ki) by the natural alpha1-proteinase inhibitor (alpha1-PI) or an autoantibody to PR3.  (+info)

Purification, redox and spectroscopic properties of the tetraheme cytochrome c isolated from Rubrivivax gelatinosus. (28/8806)

The tetraheme cytochrome c subunit of the Rubrivivax gelatinosus reaction center was isolated in the presence of octyl beta-D-thioglucoside by ammonium sulfate precipitation and solubilization at pH 9 in a solution of Deriphat 160. Several biochemical properties of this purified cytochrome were characterized. In particular, it forms small oligomers and its N-terminal amino acid is blocked. In the presence or absence of diaminodurene, ascorbate and dithionite, different oxidation/reduction states of the isolated cytochrome were studied by absorption, EPR and resonance Raman spectroscopies. All the data show two hemes quickly reduced by ascorbate, one heme slowly reduced by ascorbate and one heme only reduced by dithionite. The quickly ascorbate-reduced hemes have paramagnetic properties very similar to those of the two low-potential hemes of the reaction center-bound cytochrome (gz = 3.34), but their alpha band is split with two components peaking at 552 nm and 554 nm in the reduced state. Their axial ligands did not change, being His/Met and His/His, as indicated by the resonance Raman spectra. The slowly ascorbate-reduced heme and the dithionite-reduced heme are assigned to the two high-potential hemes of the bound cytochrome. Their alpha band was blue-shifted at 551 nm and the gz values decreased to 2.96, although the axial ligations (His/Met) were conserved. It was concluded that the estimated 300 mV potential drop of these hemes reflected changes in their solvent accessibility, while the reduction in gz indicates an increased symmetry of their cooordination spheres. These structural modifications impaired the cytochrome's essential function as the electron donor to the photooxidized bacteriochlorophyll dimer of the reaction center. In contrast to its native state, the isolated cytochrome was unable to reduce efficiently the reaction center purified from a Rubrivivax gelatinosus mutant in which the tetraheme was absent. Despite the conformational changes of the cytochrome, its four hemes are still divided into two groups with a pair of low-potential hemes and a pair of high-potential hemes.  (+info)

The aconitase of yeast. IV. Studies on iron and sulfur in yeast aconitase. (29/8806)

Chemical analyses were carried out to determine the active components of the crystalline aconitase [EC 4.2.1.3] of Candida lipolytica. The enzyme contained 2 atoms of non-heme iron, 1 atom of labile sulfur, and 6 sulfhydryl groups per molecule. One atom of the non-heme iron was released by the addition of metal-chelating agents such as sodium citrate, sodium nitrilotriacetate (NTA) or sodium ethylenediaminetetraacetate (EDTA) without loss of the enzyme activity. The non-heme iron and labile sulfur were released by the addition of sulfhydryl reagents such as rho-chloromercuribenzoate (PCMB), sodium mersalyl or urea with loss of the enzyme activity. o-Phenanthroline reacted with the iron atoms in the enzyme at pH 6.0 with loss of the activity. These results show that yeast aconitase is an iron-sulfur protein and that only one of the two non-heme iron atoms is essential for enzyme activity.  (+info)

The aconitase of yeast. V. The reconstitution of yeast aconitase. (30/8806)

The apoenzyme of yeast aconitase [EC 4.2.1.3] was prepared by treatment of yeast aconitase with sodium mersalyl, followed by passage by passage of the reaction mixture through a column of Dowex A-1 and gel filtration on Sephadex G-25. The apoenzyme had no aconitase activity, but the active enzyme could be reconstituted by treatment of the apoenzyme with ferrous ions and sodium sulfide in the presence of 2-mercapto-ethanol. The reconstituted active enzyme was isolated by DEAE-Sephadex A-50 column chromatography and Sephadex G-100 gel filtration from the reaction mixture. The reconstituted enzyme was identical with the original untreated enzyme in terms of specific activity, iron content and spectral characteristics, but not in terms of labile sulfur content. A significant difference in visible spectra between the holo- and apoenzymes appeared to be due to the difference in iron and labile sulfur contents between the two proteins.  (+info)

Light-induced oxidation-reduction reactions of cytochromes in the green sulfur photosynthetic bacterium Prosthecochloris aesturarii. (31/8806)

The light-induced oxidation-reduction reactions of cytochromes in intact cells, starved cells, and chlorobium vesicle fractions of the green sulfur photosynthetic bacterium Prosthecochloris aesturarii were studied under anaerobic conditions. On the basis of both kinetic and spectral properties, at least three cytochrome species were found to be involved in the light-induced oxidation-reduction reactions of intact cells. These cytochromes were designated according to the positions of alpha-band maxima as C555 (rapid and slow components) and C552 (intermediate). By comparing the light-minus-dark difference spectra with the reduced-minus-oxidized difference spectra of purified cytochromes of this organism, rapid component C555 and intermediate component C552 are suggested to correspond to the purified cytochromes c-555(550) and c-551.5, respectively. Although the identity of the slow-phase component is uncertain, one possibility is that the slow phase is due to the bound form of c-555(550). In substrate-depleted (starved) cells, only one cytochrome species, C555 remained in the reduced state in the dark and oxidized upon actinic illumination. This corresponds to the rapid C555 component in intact cells. In the case of chlorobium vesicle fractions, one cytochrome species having an alpha-band maximum at 554 nm was oxidized by actinic light. The effects of several inhibitors on the absorbance changes of intact cells were studied. Antimycin A decreased the rate of the dark reduction of rapid C555 component. The complex effects of CCCP (carbonyl cyanide m-chlorophenylhydrazone) on the oxidation-reduction reactions of cytochromes were interpreted as the results of inhibition of the electron donation to oxidized C552 and C555 (slow), and a shift of the dark steady-state redox levels of cytochromes. Based on these findings, it is suggested that the rapid C555 component is located in a cyclic electron transfer pathway. The other two cytochromes, C552 and C555 (slow), may be located in non-cyclic electron transfer pathways and receive electrons from exogenous substrates such as sodium sulfide. A tentative scheme for the electron transfer system in Prosthecochloris aestuarii is presented and its nature is discussed.  (+info)

Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301. (32/8806)

A procedure is described for the preparation of stable phycobilisomes from the unicellular cyanobacterium Synechococcus sp. 6301 (also known as Anacystis nidulans). Excitation of the phycocyanin in these particles at 580 nm leads to maximum fluorescence emission, from allophycocyanin and allophycocyanin B, at 673 nm. Electron microscopy shows that the phycobilisomes are clusters of rods. The rods are made up of stacks of discs which exhibit the dimensions of short stacks made up primarily of phycocyanin (Eiserling, F. A., and Glazer, A. N. (1974) J. Ultrastruct. Res. 47, 16-25). Loss of the clusters, by dissociation into rods under suitable conditions, is associated with loss of energy transfer as shown by a shift in fluorescence emission maximum to 652 nm. Synechococcus sp. 6301 phycobilisomes were shown to contain five nonpigmented polypeptides in addition to the colored subunits (which carry the covalently bound tetrapyrrole prosthetic groups) of the phycobiliproteins. Evidence is presented to demonstrate that these colorless polypeptides are genuine components of the phycobilisome. The nonpigmented polypeptides represent approximately 12% of the protein of the phycobilisomes; phycocyanin, approximately 75%, and allophycocyanin, approximately 12%. Spectroscopic studies that phycocyanin is in the hexamer form, (alpha beta)6, in intact phycobilisomes, and that the circular dichroism and absorbance of this aggregate are little affected by incorporation into the phycobilisome structure.  (+info)