Interaction of the GM2-activator protein with phospholipid-ganglioside bilayer membranes and with monolayers at the air-water interface. (33/7075)

Differential scanning calorimetry (DSC) and film balance measurements were performed to study the interactions of the GalNAcbeta1-->4(NeuAcalpha2-->3)Galbeta1-->4Glc1 -->1'Cer (GM2)-activator protein with phospholipid/ganglioside vesicles and monolayers. The nonglycosylated form of the GM2-activator protein, added to unilamellar lipid vesicles of different composition, causes differential effects on the gel to liquid-crystalline phase transition peaks. The phase transition temperature (Tm) of pure dimyristoylglycerophosphocholine (DMPC) bilayer is slightly decreased. When lipids which specifically bind the GM2-activator protein are incorporated into the vesicles (e.g. a sulfatide or gangliosides) a shoulder in the thermograms at higher temperatures is observed, indicating an increase of the stability of the gel phase in relation to the liquid-crystalline phase. We also studied the surface activity of a glycosylated and a nonglycosylated GM2-activator protein at the air-water interface. The glycosylated form showed a slightly lower surface activity than the GM2-activator protein without oligosaccharide moiety. When the GM2-activator protein is added to the sub-phase of a surface covered with a lipid monolayer, it can only insert into the monolayer and reach the air-water interface below a monolayer pressure of 25 mN.m-1, depending on the lipid composition, and not when the monolayers are at the bilayer equivalence pressure of 30-35 mN.m-1. Particularly for Galbeta1-->3GalNAcbeta1-->4(NeuAcalpha2-->3)Galbeta 1-->4Glc1-->1'Cer (GM1) and GM2 containing films, the critical pressures (picrit) when no additional increase in surface pressure is observed after addition of the protein into the subphase, are much lower. This leads to the conclusion that binding of the GM2 activator protein to the ganglioside headgroups prevents the protein from reaching the air-water interface. The protein is then located preferentially at the lipid-water interface and cannot penetrate into the chain region.  (+info)

Carboxy-terminal processing of the large subunit of [Fe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757. (34/7075)

hydA and hydB, the genes encoding the large (46-kDa) and small (13. 5-kDa) subunits of the periplasmic [Fe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757, have been cloned and sequenced. The deduced amino acid sequence of the genes product showed complete identity to the sequence of the well-characterized [Fe] hydrogenase from the closely related species Desulfovibrio vulgaris Hildenborough (G. Voordouw and S. Brenner, Eur. J. Biochem. 148:515-520, 1985). The data show that in addition to the well-known signal peptide preceding the NH2 terminus of the mature small subunit, the large subunit undergoes a carboxy-terminal processing involving the cleavage of a peptide of 24 residues, in agreement with the recently reported data on the three-dimensional structure of the enzyme (Y. Nicolet, C. Piras, P. Legrand, E. C. Hatchikian, and J. C. Fontecilla-Camps, Structure 7:13-23, 1999). We suggest that this C-terminal processing is involved in the export of the protein to the periplasm.  (+info)

Proteolytic degradation of hemoglobin by endogenous lysosomal proteases gives rise to bioactive peptides: hemorphins. (35/7075)

Hemorphin generation by mice peritoneal macrophages has been recently reported, nevertheless no conclusive data exist to localize clearly the macrophage proteolytic activity implicated in their generation. Because lysosomes are believed to be the main site of degradation in the endocytic pathway, we have studied their potential implication in the generation of hemorphins from hemoglobin. When this protein is submitted to purified rat liver lysosomes, an early generation of hemorphin-7-related peptides, detected by a radioimmunoassay, was observed. These peptides seemed to be relatively stable during the first hours of hydrolysis.  (+info)

Re-evaluation of the primary structure of Ralstonia eutropha phasin and implications for polyhydroxyalkanoic acid granule binding. (36/7075)

Sequence analysis of several cDNAs encoding the phasin protein of Ralstonia eutropha indicated that the carboxyl terminus of the resulting derived protein sequence is different from that reported previously. This was confirmed by: (1) sequencing of the genomic DNA; (2) SDS-PAGE and peptide analysis of wild-type and recombinant phasin; and (3) mass spectrometry of wild-type phasin protein. The results have implications for the model proposed for the binding of this protein to polyhydroxyalkanoic acid granules in the bacterium.  (+info)

Anaerobic purification and characterization of nitrous oxide reductase from Rhodobacter sphaeroides f. sp. denitrificans IL106. (37/7075)

The nitrous oxide reductase from the photodenitrifier, Rhodobacter sphaeroides f. sp. denitrificans IL106, has been purified under anaerobic conditions. The specific activity of the enzyme was 78 micromol nitrous oxide reduced per min per mg protein, which was approximately 80% higher than that of the aerobic form. The enzyme purified anaerobically retained most of its activity after aerobic storage at 4 degrees C for 2 months without any additives. Visible absorption spectra of the Rhodobacter nitrous oxide reductase resembled those of the enzymes from other origins. The enzyme retained its activity after reduction with sodium dithionite, and the enzyme activity could be determined using dithionite-reduced benzyl viologen. Turnover-dependent inactivation of the enzyme was suppressed by complete removal of oxygen from the reaction mixture, and promoted by zinc ions.  (+info)

Isolation and characterization of a novel Forssman active acidic glycosphingolipid with branched isoglobo-, ganglio-, and neolacto-series hybrid sugar chains. (38/7075)

Equine kidney and spleen contain a Forssman active glycosphingolipid, and the structure of this glycolipid has been reported to be that of a globopentaosylceramide (GalNAcalpha-1,3GalNAcbeta-1,3Galalpha-1, 4Galbeta-1,4Glcbeta-1,1'Ceramide). We found that equine kidney contains several other anti-Forssman antibody-reactive glycosphingolipids. One of these acidic Forssman active glycosphingolipids was isolated and characterized by means of NMR, mass spectrometry, permethylation studies, and TLC-immunostaining. This glycolipid contains three moles of galactose, one mole of glucose, three moles of N-acetylgalactosamine, one mole of N-acetylglucosamine, and one mole of N-acetylneuraminic acid, and is stained on TLC with anti-Forssman antibodies and anti-GM2 ganglioside antibodies. HOHAHA and ROESY experiments and permethylation studies showed this glycolipid oligosaccharide to be branched at the innermost galactose; one chain has an isoglobo structure with a terminal Forssman disaccharide and the other chain is branched through the linkage of N-acetylglucosaminebeta-1,6 to the inner galactose. The nonreducing end of the GM2 trisaccharide is linked to this glucosamine. The structure of the oligosaccharide of the glycolipid presented here is a novel type, having branched isoglobo-, ganglio-, and neolacto-series oligosaccharides. Mass spectrometric analyses indicated the ceramide moiety of the glycolipid to be composed predominantly of hydroxy fatty acids (C20:0, C22:0, C23:0, C24:0, and C25:0) and hydroxysphinganine. GalNAcalpha-1,3GalNAcbeta-1,3Galalpha-1,3[GalNAcbet a-1, 4(NeuAcalpha-2,3)Galbeta-1,4GlcNAcbeta-1,6]Galbeta+ ++-1,4Glcbeta-1, 1'Ceramide  (+info)

Atypical genetic locus associated with constitutive production of enterocin B by Enterococcus faecium BFE 900. (39/7075)

A purified bacteriocin produced by Enterococcus faecium BFE 900 isolated from black olives was shown by Edman degradation and mass spectrometric analyses to be identical to enterocin B produced by E. faecium T136 from meat (P. Casaus, T. Nilsen, L. M. Cintas, I. F. Nes, P. E. Hernandez, and H. Holo, Microbiology 143:2287-2294, 1997). The structural gene was located on a 2.2-kb HindIII fragment and a 12.0-kb EcoRI chromosomal fragment. The genetic characteristics and production of EntB by E. faecium BFE 900 differed from that described so far by the presence of a conserved sequence like a regulatory box upstream of the EntB gene, and its production was constitutive and not regulated. The 2.2-kb chromosomal fragment contained the hitherto undetected immunity gene for EntB in an atypical orientation that is the reverse of that of the structural gene. Typical transport and other genes associated with bacteriocin production were not detected on the 12.0-kb chromosomal fragment containing the EntB structural gene. This makes the EntB genetic system different from most other bacteriocin systems, where transport and possible regulatory genes are clustered. EntB was subcloned and expressed by the dedicated secretion machinery of Carnobacterium piscicola LV17A. The structural gene was amplified by PCR, fused to the divergicin A signal peptide, and expressed by the general secretory pathway in Enterococcus faecalis ATCC 19433.  (+info)

Purification and some chemical properties of 30 kDa Ginkgo biloba glycoprotein, which reacts with antiserum against beta 1-->2 xylose-containing N-glycans. (40/7075)

From the seeds of Ginkgo biloba, a glycoprotein, which is a major component that reacts with an antiserum against beta 1-->2 xylose-containing N-glycans, has been purified and characterized. The N-terminal amino acid sequence of the purified glycoprotein was H-K-A-N-X-V-T-V-A-F-V-M-T-Q-H-L-L-F-G-Q-. The molecular mass was estimated to be 17 kDa and 16 kDa by SDS-PAGE under reducing conditions, however, the molecular mass of this glycoprotein in the native state was 30,762 by MALDI-TOF MS, suggesting that this glycoprotein consists of two subunits; one is glycosylated and the other is not. The structure of N-glycan linked to this glycoprotein (designated 30 kDa GBGP) was identified as Man3Fuc1Xyl1GlcNAc2, which is the predominant N-glycan linked to the storage glycoproteins in the same seeds (Kimura, Y et al. (1998) Biosci. Biotechnol. Biochem. 62, 253-261). From the peptic digest of the carboxymethylated glycosylated subunit, one glycopeptide was purified by RP-HPLC and the amino acid sequence was identified as H-K-A-N-N(Man3Fuc1Xyl1Glc-NAc2)-V-T-V-A-F, which corresponded to the N-terminal amino acid sequence.  (+info)