p53 protects against skin cancer induction by UV-B radiation. (41/2196)

To assess the role of the p53 tumor suppressor gene in skin carcinogenesis by UV radiation, mice constitutively lacking one or both copies of the functional p53 gene were compared to wild-type mice for their susceptibility to UV carcinogenesis. Heterozygous mice showed greatly increased susceptibility to skin cancer induction, and homozygous p53 knockout mice were even more susceptible. Accelerated tumor development in the heterozygotes was not associated with loss of the remaining wild-type allele of p53, as reported for tumors induced by other carcinogens, but in many cases was associated with UV-induced mutations in p53. Tumors arose on the ears and dorsal skin of mice of all three genotypes, and homozygous knockout mice also developed ocular tumors, mainly melanomas. Skin tumors in the p53 knockout mice were predominately squamous cell carcinomas and were associated with premalignant lesions resembling actinic keratoses, whereas those in the heterozygous and wild-type mice were mainly sarcomas. These results demonstrate the importance of p53 in protecting against UV-induced cancers, particularly in the eye and epidermis.  (+info)

Developmental toxicity studies of 2-(difluoromethyl)-dl-ornithine (DFMO) in rats and rabbits. (42/2196)

DFMO, an irreversible inhibitor of ornithine decarboxylase (ODC), is under development as a chemopreventive drug against cancers with pronounced proliferative phases. In support of human clinical trials, preclinical developmental toxicity studies were conducted in pregnant rats and rabbits. Rats were treated during GD 6-17, and fetuses were obtained by C-section on GD 20. Rabbits were treated during GD 7-20, and fetuses were obtained by C-section on GD 29. The dose range-finding study in rats (5/group at 0, 50, 125, 300, 800, or 1000 mg/kg/day) revealed maternal toxicity at doses > or = 800 mg/kg/day (decreased body weights and food consumption) and developmental toxicity at doses > or = 300 mg/kg/day (increased early resorptions and reduced fetal body weights). In the main study, rats (25/group) received 0, 30, 80, or 200 mg/kg/day. Developmental toxicity in the absence of maternal toxicity was observed at 200 mg/kg/day as significantly decreased fetal weights and increased incidence of litters with skeletal variations of 14th rudimentary rib, 14th full rib, and/or 27th presacral vertebrae. There were no treatment-related fetal skeletal malformations or external or visceral anomalies at any dose level. The dose range-finding study in rabbits (5/group at 0, 30, 60, 120, 240, or 500 mg/kg/day) revealed developmental toxicity at doses > or = 60 mg/kg/day (increased resorptions and reduced fetal body weights) in the absence of maternal toxicity. In the main study, rabbits (20/group) received 0, 15, 45, or 135 mg/kg/day. Developmental toxicity in the absence of maternal toxicity was observed at 135 mg/kg/day as nonsignificantly increased early resorptions, decreased implantation sites, decreased viable fetuses, and reduced fetal weights. There were no external, visceral, or skeletal anomalies at any dose level. Thus, in the main developmental toxicity studies, DFMO produced developmental but not maternal toxicity at 200 and 135 mg/kg/day in rats and rabbits, respectively. Accordingly, in rats, the maternal no-observable-effect level (NOEL) was 200 mg/kg/day and the fetal NOEL was 80 mg/kg/day; while in rabbits the maternal NOEL was 135 mg/kg/day and the fetal NOEL was 45 mg/kg/day. These fetal NOELs are several-fold higher than the dose level currently used in Phase II and III clinical trials (approximately 13 mg/kg).  (+info)

Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. (43/2196)

Elevated tumor interstitial fluid pressure (IFP) is partly responsible for the poor penetration and distribution of therapeutic agents in solid tumors. The etiology of tumor interstitial hypertension is poorly understood. We have postulated that the solid stress generated by tumor cells growing in a confined space compresses blood vessels and increases tumor microvascular pressure and IFP. To test the hypothesis that neoplastic cell loss would decompress blood vessels and lower IFP, we induced apoptosis in tumors with paclitaxel and docetaxel. Taxanes inhibited the growth of the murine mammary carcinoma (MCa-IV) and of the human soft tissue sarcoma (HSTS-26T). Taxanes induced apoptosis and reduced the density of intact neoplastic cells in both MCa-IV and HSTS-26T. To determine whether neoplastic cell loss decompressed blood vessels, we measured the diameter of tumor vessels in HSTS-26T tumors implanted in transparent dorsal skin fold chambers. At 48 and 96 h after paclitaxel, the diameter of tumor vessels was significantly increased. The increase in vascular diameters was associated with reductions in microvascular pressure and IFP. The changes in neoplastic cell density and IFP were also correlated. In the human glioblastoma U87, which is resistant to paclitaxel, the IFP and cellular density were not modified by paclitaxel treatment. Collectively, these results support the hypothesis that solid stress generated by neoplastic cell proliferation increases vascular resistance and IFP. The increase in vessel diameter induced by paclitaxel and docetaxel suggests that taxanes could improve tumor response by increasing the vascular surface area for delivery of therapeutic agents.  (+info)

Virulence of Salmonella enterica serotype Enteritidis aflagellate and afimbriate mutants in a day-old chick model. (44/2196)

Certain fimbriae and the flagellae of Salmonella enterica serovar Typhimurium have been shown to contribute to attachment and invasion of gut epithelium in the murine typhoid infection model and to contribute to pathogenesis in the chick. However, little is known of the role these organelles play in Enteritidis poultry infections and, to study this, day-old chicks were dosed orally in separate experiments with defined multiply afimbriate and/or aflagellate mutant strains of Enteritidis. The colonization and invasion characteristics of each mutant were compared with those of the isogenic wild type strain by the determination of the number of bacteria recovered from livers and spleens at known time points post infection. Compared with wild type Enteritidis, a mutant unable to express flagella but retaining the genetic potential to express fimbriae was recovered post mortem from livers and spleens in significantly reduced numbers compared to the isogenic wild-type at all time points post infection (P < 0.001). Conversely, a flagellate but multiply afimbriate mutant (defective for the elaboration of five different fimbrial types) and a flagellate but non-motile 'paralysed' mutant were recovered from livers and spleens in similar numbers to the wild-type. The data suggested that Enteritidis flagella, but not fimbriae, played an important role in pathogenesis in the chick model and that the flagellar apparatus itself and not motility per se contributed significantly to this role.  (+info)

Pigs with highly prevalent antibodies to human coronavirus and swine haemagglutinating encephalomyelitis virus in the Tohoku District of Japan. (45/2196)

From 1985 to 1988, a total of 2496 swine sera from 60 farms in the Tohoku District of the Honshu Island of Japan were examined for antibodies to swine haemagglutinating encephalomyelitis virus (HEV), human coronavirus (HCV) and bovine coronavirus (BCV) by haemagglutination-inhibition (HI) test. Antibodies to HEV 67N strain and HCV OC43 strain were highly prevalent with positivity rates of 82.1 and 91.4%, respectively, while seropositivity rate to BCV Kakegawa strain was 44.2%. No clinical signs of HEV infection were noticed in any farms including farms with relatively high seropositivity. The results suggested that HCV or antigenitically related virus(es) as well as HEV might be perpetuated in swine in the Tohoku District.  (+info)

Role and regulation of IL-12 in the in vivo response to staphylococcal enterotoxin B. (46/2196)

Injection of a staphylococcal superantigen (SAg) such as staphylococcal enterotoxin B (SEB) in adult mice results in cytokine production and cell proliferation which can lead to septic shock. The aim of the present work was to identify the cytokines and co-stimulatory molecules regulating the in vivo systemic release of IFN-gamma, a cytokine known to play an important role in the pathophysiology associated with bacterial infections. We demonstrate in this study that (i) in contrast to lipopolysaccharide (LPS), SEB administration induces high levels of the p70, bioactive form, of IL-12; (ii) IL-12 production in response to SEB requires both CD40-dependent signals and IFN-gamma secretion; (iii) the early systemic release of IFN-gamma (3 h post-treatment) in response to SEB is IL-12 independent, while the sustained, late response (6-9 h post-treatment) requires endogenous IL-12 production; (iv) IL-12 produced during the primary SEB response (day 0) is responsible for priming cells in vivo to high IFN-gamma production upon secondary challenge (day 2); (v) the priming effect of IL-12 is TCR unrelated, as SEB-primed animals secrete high levels of IFN-gamma in response to both staphylococcal enterotoxin A and LPS administered 48 h later. The ability of bacterial SAg to induce septic shock and to modulate the immune response to unrelated antigens may therefore be related to their unique capacity to induce systemic IL-12 production in vivo. These observations also help to explain why SEB-primed animals, known to express an anergic phenotype 48 h post-treatment (as judged by defective IL-2 production and proliferation), nevertheless display an increased capacity to secrete the inflammatory cytokine IFN-gamma.  (+info)

Functional diversity of natural IgM. (47/2196)

This paper proposes a method for the quantitative characterization of repertoire diversity of an unknown mixture of antibodies on the basis of its reactivity profile in the quantitative immunoblot (QIB). The QIB is calibrated by measuring the reactivity profiles of supernatants of known 'diversity' (i.e. known numbers of B cell clones). We define a quantitative 'index of variability' (IV) which decreases regularly as the diversity increases and the profiles tend towards a common 'convergence profile'. The calibration procedure is consolidated by a mathematical model based on the Poisson distribution; this theoretical model accounts correctly for the observed convergence behavior. On the basis of this calibration curve, it is possible to estimate the diversity of an unknown antibody mixture from a measure of its IV. We conclude that the functional diversity of natural serum IgM in mice can be estimated at approximately 16,000 clones.  (+info)

Oral administration of the immunomodulator JBT-3002 induces endogenous interleukin 15 in intestinal macrophages for protection against irinotecan-mediated destruction of intestinal epithelium. (48/2196)

We recently reported that p.o. administration of the new synthetic bacterial lipopeptide JBT-3002 can protect mice from irinotecan (CPT-11)-induced intestinal injury, but the mechanism was not known. Because interleukin-15 (IL-15) is associated with maintenance of intestinal epithelial cell integrity, we examined whether p.o. administration of JBT-3002 elevates expression of this monocyte-derived cytokine. Four daily i.p. injections of 100 mg/kg CPT-11 were effective against liver metastases produced by CT-26 murine colon cancer cells, but severe damage to the intestinal epithelium and early death of the mice also resulted. Three consecutive daily p.o. doses of JBT-3002 prior to i.p. injection of irinotecan prevented the undesirable side effects of irinotecan without reducing its ability to eradicate liver metastases. Immunohistochemical analyses of the intestines of mice treated with JBT-3002 and CPT-11 demonstrated an increase in the number of dividing cells in the crypts and enhanced expression of IL-15 in lamina propria cells; the increase correlated with increased expression of the IL-15 gene as determined by semiquantitative reverse transcriptase-PCR. In vitro studies demonstrated that JBT-3002 induced expression of IL-15 in peritoneal macrophages but not in normal intestinal epithelial cells (IEC-6). Moreover, the presence of IL-15 decreased irinotecan-mediated cytotoxicity of IEC-6 epithelial cells. These data show that the p.o. administration of JBT-3002 induces expression of IL-15 by macrophages in the lamina propria, which can prevent irinotecan-induced injury to the intestinal mucosa.  (+info)