Body fat accumulation is greater in rats fed a beef tallow diet than in rats fed a safflower or soybean oil diet. (41/353)

The effects of dietary fats , consisting of different fatty acids, on body fat accumulation and uncoupling protein (UCP) in interscapular brown adipose tissue were studied in rats. Metabolisable energy in experimental diets based on safflower oil, soybean oil or beef tallow was measured strictly (experiment 1). Male Wistar rats were then meal-fed an isoenergetic diet for 8 weeks (experiment 2). Each group of rats showed the same weight gain during the 8-week experimental period. Carcass fat content was greater in rats fed the beef tallow diet than in those fed the with the safflower or soybean oil diets, whereas the weight of abdominal adipose tissue was the same for all three dietary groups. Gene expression of UCP1 and the UCP content of the interscapular brown adipose tissue was lower in the beef tallow diet group than in the other dietary groups. A negative correlation was observed between carcass fat content and n-6 unsaturated fatty acid content in dietary fats. These results suggest that the greater body fat accumulation in rats fed the beef tallow diet results from lower expression of UCP1 mRNA and lower UCP content in brown adipose tissue. n-6 Polyunsaturated fatty acids may be the most effective fatty acids in limiting body fat.  (+info)

Effects of free fatty acids on glucose uptake and utilization in healthy women. (42/353)

To study effects of sex on free fatty acid (FFA)-induced insulin resistance, we have examined the effects of acute elevations of plasma FFA levels on insulin-stimulated total body glucose uptake in nine healthy young women. Euglycemic-hyperinsulinemic (approximately 500 pmol/l) clamps were performed for 4 h with coinfusion of either lipid/heparin (L/H) to acutely raise plasma FFA levels (from approximately 600 to approximately 1,200 micro mol/l) or saline/glycerol to lower fatty acids (from approximately 600 to approximately 50 micro mol/l). L/H infusion inhibited insulin-stimulated glucose uptake (determined with [3-(3)H]glucose) and glycogen synthesis by 31 and 40%, respectively (P < 0.01), almost completely abolished insulin suppression of endogenous glucose production (EGP) (13.6 vs. 10.0 micro mol x kg(-1) x min(-1), NS), prevented the insulin induced increase in carbohydrate oxidation (8.1 vs. 7.4 micro mol x kg(-1) x min(-1), NS), and stimulated fat oxidation (from 3.6 to 5.1 micro mol x kg(-1) x min(-1), P < 0.01). These data showed that acute increases in plasma FFA levels inhibited the actions of insulin on glucose uptake, glycogen synthesis, and EGP in women to a degree similar to that previously reported in men. We conclude that at insulin and FFA levels in the postprandial range, women and men were susceptible to FFA-induced peripheral and hepatic insulin resistance.  (+info)

Dietary (n-3) fat and cholesterol alter tissue antioxidant enzymes and susceptibility to oxidation in SHR and WKY rats. (43/353)

Previously, 8% fish oil blend diets, compared to butter and soybean oil blend diets, reduced specific antioxidant enzyme activities and tissue susceptibility to in vitro oxidative stress in spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats. Moreover, high cholesterol (5.0 g/kg diet) diets protected against in vitro tissue lipid oxidation. In this study, we hypothesized that 160 g fat/kg diet as blends of (n-6) or (n-3) oils and cholesterol would alter antioxidant enzyme activities and thus increase tissue susceptibility to oxidation. The effects of diet blends of saturated (butter, B), (n-6) (soybean oil, SBO) or (n-3) (menhaden oil, MO) oils with cholesterol (0.5 or 5.0 g/kg) on systolic blood pressure (SBP), plasma lipids, antioxidant enzymes and susceptibility to oxidation were examined in SHR and WKY rats. SBP at 13 wk of age was greater (P < 0.001) in SHR than in WKY rats, but was not affected by diets. Plasma cholesterol and triacylglycerols were decreased (P < 0.001) by MO diets. Hepatic glutathione reductase activities were reduced (P < 0.001) in SBO-fed SHR and enhanced in SBO- and MO-fed WKY rats. Glutathione levels were reduced (P < 0.001) in RBC and enhanced (P < 0.001) in livers of MO-fed rats. Lipid oxidation was enhanced (P < 0.001) in red blood cells (RBC) from SBO groups, and hearts and livers of MO groups. High cholesterol diets reduced (P < or = 0.001) susceptibility to lipid peroxidation in RBC and liver of SHR and WKY rats. Greater amounts of dietary (n-3) fat enhance tissue susceptibility to oxidation, which can be modulated by increased dietary cholesterol in SHR and WKY rats.  (+info)

The protective effect and mechanism of soybean oil and its extracts on DNA damage in human ECV304 cells exposed to UV-C. (44/353)

The degree of DNA damage in the human endothelial cell line ECV304 exposed to UV-C, with or without the presence of soybean oil (SBO), was assessed by the Comet assay. After 5-min exposure to UV-C, the %Tail DNA in the ECV304 cells ranged from 0% to 20% for SBO treatment groups and from 50% to 70% for the control group. The result indicated a strong protective effect of SBO against UV-C-induced DNA damage. To clarity the mechanism of this protective effect of SBO, the methanol extract of SBO (MESO) was analyzed and its capacity against UV-C-induced DNA damage was evaluated. Gas chromatography mass spectrometry (GC-MS) analysis confirmed that MESO contained many antioxidants including n-3-polyunsaturated fatty acid (n-3-PUFA), tocopherols and phytosterols. Comet assay revealed that the MESO was also active in reducing the DNA damage dose-dependently (P<0.0001) vs. control in the ECV304 cells. Therefore, we concluded that these potential antioxidants may be responsible for the scavenge of oxidative radicals induced by UV-C irradiation. This study suggested that dietary SBO, which is abundant of antioxidants, may reduce the content or impact of reactive oxygen species (ROS) and lower the risk of diseases caused by ROS.  (+info)

Gene expression and molecular composition of phospholipids in rat brain in relation to dietary n-6 to n-3 fatty acid ratio. (45/353)

Rats were fed from conception till adulthood either with normal rat chow with a linoleic (LA) to linolenic acid (LNA) ratio of 8.2:1 or a rat chow supplemented with a mixture of perilla and soy bean oil giving a ratio of LA to LNA of 4.7:1. Fat content of the feed was 5%. Fatty acid and molecular species composition of ethanolamine phosphoglyceride was determined. Effect of this diet on gene expression was also studied. There was an accumulation of docosahexaenoic (DHA) and arachidonic acids (AA) in brains of the experimental animals. Changes in the ratio sn-1 saturated, sn-2 docosahexaenoic to sn-1 monounsaturated, sn-2 docosahexaenoic were observed. Twenty genes were found overexpressed in response to the 4.7:1 mixture diet and four were found down-regulated compared to normal rat chow. Among them were the genes related to energy household, lipid metabolism and respiration. The degree of up-regulation exceeded that observed with perilla with a ratio of LA to LNA 8.2:1 [Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 2619]. It was concluded that brain sensitively reacts to the fatty acid composition of the diet. It was suggested that alteration in membrane architecture and function coupled with alterations in gene expression profiles may contribute to the observed beneficial impact of n-3 type polyunsaturated fatty acids on cognitive functions.  (+info)

Cholesterol synthesis in mice is suppressed but lipofuscin formation is not affected by long-term feeding of n-3 fatty acid-enriched oils compared with lard and n-6 fatty acid-enriched oils. (46/353)

Hypocholesterolemic activity of dietary polyunsaturated fatty acids is observed after relatively short-term but not long-term feedings, and their long-term feedings are suspected to accelerate aging through tissue accumulation of lipid peroxides and age pigments (lipofuscin). To define the long-term effects of fats and oils in more detail, female mice were fed a conventional basal diet supplemented with lard (Lar), high-linoleic (n-6) safflower oil (Saf), rapeseed oil (Rap), high-alpha-linolenic (n-3) perilla oil (Per), or a mixture of ethyl docosahexaenoate and soybean oil (DHA/Soy) from 17 weeks to 71 weeks of age. The DHA/Soy and Per groups had decreased serum cholesterol levels compared with the Lar and Saf groups, but the difference between the Lar and Saf groups was not significant. The 3-hydroxy-3-methyglutary-CoA (HMG-CoA) reductase activity in the liver was also significantly lower in the Per and DHA/Soy groups. However, no significant difference in lipofuscin contents in the brain and liver was observed among the 5 dietary groups, despite significant differences in peroxidizability indices of the dietary and/or tissue lipids. These results indicate that n-3 fatty acid-rich oils are hypocholesterolemic by suppressing hepatic HMG-CoA reductase activity compared with animal fats and high-linoleic (n-6) oil, but tissue lipofuscin contents are not affected by a long-term feeding of fats and oils with different degree of unsaturation in mice.  (+info)

Effectiveness of short-term feeding strategies for altering conjugated linoleic acid content of beef. (47/353)

A steer finishing trial was performed to determine the effect of short-term dietary regimens on conjugated linoleic acid (CLA) content of muscle tissues. The experimental design was an incomplete 3 x 2 factorial, with three levels of soybean oil (SBO; 0, 4, and 8% of diet DM) and two levels of forage (20 vs. 40% of diet DM). Forty Angus x Hereford steers averaging 504 +/- 29.0 kg were allotted randomly to one of four treatments for the last 6 wk of the finishing period. Treatments were: 80:20 concentrate:forage control diet (C); 80:20 concentrate:forage + 4% SBO (C4); 60:40 concentrate:forage + 4% SBO (F4); and 60:40 concentrate:forage + 8% SBO (F8). After 42 d on the experimental diets, steers were sacrificed and samples were collected from the chuck, loin, and round muscle groups. Fatty acid (FA; mg/100 mg of FA) composition was determined by gas-liquid chromatography. Data were statistically analyzed with mixed models procedures. The performance and carcass quality model included the effects of SBO and forage. The model for FA composition included the effects of SBO, forage, muscle group, and interactions. Orthogonal contrasts were used to determine linear effects of SBO. There were no differences in growth performance among treatments (P > 0.05). Increasing dietary SBO linearly decreased dressing percent (P = 0.04), and tended to linearly decrease marbling score (P = 0.12) and quality grade (P = 0.08). The only CLA isomer detected in tissue samples was cis-9,trans-11. Addition of SBO to diets linearly increased linoleic acid (18:2n-6; P = 0.04) and tended to linearly increase linolenic acid (18:3n-3; P = 0.10) in muscle tissues. The CLA in lean tissues was decreased (P = 0.005) with SBO-containing diets. These findings suggest that increased PUFA may limit ruminal production of CLA and trans-vaccenic acid (VA) and/or may depress stearoyl-CoA desaturase expression or activity in lean tissues, which in turn limits CLA formation and accretion in tissues. Increasing dietary forage tended to increase 18:0, 18:2n-6, CLA, and 18:3n-3 (P < 0.15), suggesting that increased forage may mitigate toxic effects of PUFA on ruminal biohydrogenation, thereby increasing the pool of CLA and VA available for CLA formation and accretion in tissues. Short-term feeding of elevated SBO and forage levels can alter FA profiles in muscle tissues.  (+info)

Bottle-choice tests in Sprague-Dawley rats using liquid diets that differ in oil and sucrose contents. (48/353)

Bottle choice tests using liquid diets were done with Sprague-Dawley (SD) rats. SD rats ingested more oil-and-sucrose-enriched milk (hi-fat) and less oil-enriched milk (hi-fat-no-carb) than sucrose-enriched (hi-carb) milk by two-bottle choice tests after they were habituated to liquid diets for 4 days. Chronic food restriction didn't increase hi-fat ingestion but hi-fat-no-carb. Rats ingested less without habituation, and overnight food deprivation increased intake. This increment was maintained after rats were free-fed. The difference in fat content of the maintenance diet had little effect on fat preference. These results showed SD rats prefer a sweet and fatty liquid diet than a sweet and lean liquid diet. Habituation and food restriction were more important than the composition of the maintenance diet to demonstrate a clear preference for the fatty liquid diet.  (+info)