Antiproliferative effects of insulin-like growth factor-binding protein-3 in mesenchymal chondrogenic cell line RCJ3.1C5.18. relationship to differentiation stage. (49/1133)

Chondrogenesis results from a complex equilibrium between chondrocyte proliferation and differentiation. Insulin-like growth factors (IGFs) have a crucial role in chondrogenesis, but their mechanisms of action are not well defined. IGF-binding protein-3 (IGFBP-3) is the major carrier for circulating IGFs in postnatal life, and has been shown to have IGF-independent effects on proliferation of several cancer cell lines. In this study, we have evaluated the IGF-independent and -dependent effects of IGFBP-3 on chondrocyte proliferation and the relationship of these effects with chondrocyte differentiation stage. We used the RCJ3.1C5.18 nontransformed mesenchymal chondrogenic cell line, which, over 2 weeks of culture, progresses through the differentiation pathway exhibited by chondrocytes in the growth plate. We demonstrated that IGFBP-3 inhibited, in a dose-dependent manner (1-30 nm), the proliferation of chondroprogenitors and early differentiated chondrocytes, stimulated by des-(1-3)-IGF-I and longR(3)-IGF-I (IGF-I analogs with reduced affinity for IGFBP-3), and by insulin and IGF-I. In terminally differentiated chondrocytes, IGFBP-3 retained the ability to inhibit cell proliferation stimulated by IGF-I, but had no effect on cell growth stimulated by insulin, or des-(1-3)-IGF-I or longR(3)IGF-I. By monolayer affinity cross-linking, we demonstrated a specific IGFBP-3-associated cell-membrane protein of approximately 20 kDa. We determined that IGFBP-3 has an antiproliferative effect on chondrocytes and, that this effect is related to the differentiation process. In chondroprogenitors and early differentiated chondrocytes, antiproliferative effect of IGFBP-3 is mainly IGF-independent, whereas, following terminal differentiation this effect is IGF-dependent.  (+info)

Myostatin and insulin-like growth factor-I and -II expression in the muscle of rats exposed to the microgravity environment of the NeuroLab space shuttle flight. (50/1133)

The mechanism of the loss of skeletal muscle mass that occurs during spaceflight is not well understood. Myostatin has been proposed as a negative modulator of muscle mass, and IGF-I and IGF-II are known positive regulators of muscle differentiation and growth. We investigated whether muscle loss associated with spaceflight is accompanied by increased levels of myostatin and a reduction in IGF-I and -II levels in the muscle, and whether these changes correlate with an increase in muscle proteolysis and apoptosis. Twelve male adult rats sent on the 17-day NASA STS-90 NeuroLab space flight were divided upon return to earth into two groups, and killed either 1 day later (R1) or after 13 days of acclimatization (R13). Ground-based control rats were maintained for the same periods in either vivarium (R3 and R15, respectively), or flight-simulated cages (R5 and R17, respectively). RNA and protein were isolated from the tibialis anterior, biceps femoris, quadriceps, and gastrocnemius muscles. Myostatin, IGF-I, IGF-II and proteasome 2c mRNA concentrations were determined by reverse transcription/PCR; myostatin and ubiquitin mRNA were also measured by Northern blot analysis; myostatin protein was estimated by immunohistochemistry; the apoptotic index and the release of 3-methylhistidine were determined respectively by the TUNEL assay and by HPLC. Muscle weights were 19-24% lower in the R1 rats compared with the control R3 and R5 rats, but were not significantly different after the recovery period. The myostatin/beta-actin mRNA ratios (means+/-s.e.m. ) were higher in the muscles of the R1 rats compared with the control R5 rats: 5.0-fold in tibialis (5.35 +/- 1.85 vs 1.07 +/- 0.26), 3.0-fold in biceps (2.46+/-0.70 vs 0.81 +/- 0.04), 1.9-fold in quadriceps (7.84 +/- 1.73 vs 4.08 +/- 0.52), and 2.2-fold in gastrocnemius (0.99 +/- 0.35 vs 0.44 +/- 0.17). These values also normalized upon acclimatization. Our antibody against a myostatin peptide was validated by detection of the recombinant human myostatin protein on Western blots, which also showed that myostatin immunostaining was increased in muscle sections from R1 rats, compared with control R3 rats, and normalized upon acclimatization. In contrast, IGF-II mRNA concentrations in the muscles from R1 rats were 64-89% lower than those in R3 animals. With the exception of the gastrocnemius, IGF-II was also decreased in R5 animals maintained in flight-simulated cages, and normalized upon acclimatization. The intramuscular IGF-I mRNA levels were not significantly different between the spaceflight rats and the controls. No increase was found in the proteolysis markers 3-methyl histidine, ubiquitin mRNA, and proteasome 2C mRNA. In conclusion, the loss of skeletal muscle mass that occurs during spaceflight is associated with increased myostatin mRNA and protein levels in the skeletal muscle, and a decrease in IGF-II mRNA levels. These alterations are normalized upon restoration of normal gravity and caging conditions. These data suggest that reciprocal changes in the expression of myostatin and IGF-II may contribute to the multifactorial pathophysiology of muscle atrophy that occurs during spaceflight.  (+info)

Maternal nutrition alters the expression of insulin-like growth factors in fetal sheep liver and skeletal muscle. (51/1133)

We investigated the influence of maternal dietary restriction between days 28 and 80 of gestation followed by re-feeding to the intake of well-fed ewes up to 140 days of gestation (term is 147 days) in sheep, on expression of mRNA for insulin-like growth factor (IGF)-I, IGF-II and growth hormone receptor (GHR) in fetal liver and skeletal muscle. Singleton bearing ewes either consumed 3.2-3.8 MJ/day of metabolisable energy (ME) (i.e. nutrient restricted - approximately 60% of ME requirements, taking into account requirements for both ewe maintenance and growth of the conceptus) or 8.7-9.9 MJ/day (i.e. well fed - approximately 150% of ME requirements) between days 28 and 80 of gestation. All ewes were then well fed (150% of ME requirements) up to day 140 of gestation and consumed 8-10.9 MJ/day. At days 80 and 140 of gestation, five ewes were sampled from each group and fetal tissues taken. There was no difference in fetal body weight or liver weights between groups at either sampling date, or skeletal muscle (quadriceps) weight at 140 days. IGF-I mRNA abundance was lower in livers of nutrient-restricted fetuses at day 80 of gestation (nutrient restricted 2.35; well fed 3.70 arbitrary units), but was higher than well-fed fetuses at day 140 of gestation, after 60 days of re-feeding (restricted/re-fed 4.27; well fed 2.83;s.e.d. 0.98 arbitrary units, P=0.061 for dietxage interaction). IGF-II mRNA abundance was consistently higher in livers of nutrient-restricted fetuses (80 days: nutrient restricted 7.78; well fed 5.91; 140 days: restricted/re-fed 7.23; well fed 6.01;s.e.d. 1.09 arbitrary units, P=0.061 for diet). Nutrient restriction had no effect on hepatic GHR mRNA abundance, but re-feeding of previously nutrient-restricted fetuses increased GHR mRNA compared with continuously well-fed fetuses (80 days: nutrient restricted 70.6; well fed 75.1; 140 days: restricted/re-fed 115.7; well fed 89.4;s.e.d. 10.13 arbitrary units, P=0.047 for dietxage interaction). In fetal skeletal muscle, IGF-I mRNA abundance was not influenced by maternal nutrition and decreased with gestation age (P<0.01). IGF-II mRNA abundance was higher in skeletal muscle of nutrient-restricted fetuses compared with well-fed fetuses at day 80 of gestation (nutrient restricted 16.72; well fed 10.53 arbitrary units), but was lower than well-fed fetuses after 60 days of re-feeding (restricted/re-fed 7.77; well fed 13.72;s.e.d. 1.98 arbitrary units, P<0.001 for dietxage interaction). There was no effect of maternal nutrition or gestation age on fetal skeletal muscle GHR expression. In conclusion, maternal nutrient restriction in early to mid gestation with re-feeding thereafter results in alterations in hepatic and skeletal muscle expression of IGF-I, IGF-II and/or GHR in the fetus which may subsequently relate to altered organ and tissue function.  (+info)

The expression of the IGF family and GH receptor in the bovine mammary gland. (52/1133)

To study the involvement of the IGFs in mammary development and lactation of the cow, the temporal expressions of IGF-I and -II, its receptor type 1 (IGFR-1), IGF-binding proteins (IGFBPs)-1 to -6 and GH receptor (GHR) mRNA were examined. This was carried out for different stages of mammogenesis, lactogenesis, galactopoiesis and involution in the bovine mammary gland of 26 animals. Furthermore, IGF-I was localised by immunohistochemistry. The highest mRNA concentrations for IGF-I were detected in the mammary tissue of late pregnant heifers (days 255-272) and significantly lower expression was detected during lactogenesis and galactopoiesis. Immunohistochemistry of IGF-I revealed only a weak staining in the epithelium of the ducts during mammogenesis. The epithelium of the alveoli were negative during mammogenesis, lactogenesis and galactopoiesis but displayed distinct IGF-I activity during involution. In the stroma a distinct staining of the cytoplasm of adipocytes and of vascular smooth muscle cells was observed. A certain percentage of fibroblasts (usually 20-30%) were also immunopositive. In contrast, highest expression for IGFR-1 was detected during galactopoiesis and involution. The lowest mRNA concentration for IGFR-1 was found during pregnancy (days 194-213). In general, the expression of IGF-II was not regulated during mammogenesis and lactation, but decreased during involution. The mRNA for the six binding proteins was detected in the bovine mammary gland. The dominant binding proteins were IGFBP-3 and -5. The highest expression of IGFBP-3 was observed during mid-pregnancy and the lowest during late lactation, involution and in non-pregnant heifers. The mRNA for IGFBP-5 increased during late mammogenesis and lactogenesis followed by a decrease thereafter. In general, the mRNA concentrations for IGFBP-2, -4 and -6 were barely detectable during all stages. In contrast, the expression for IGFBP-1 was upregulated in the mammary gland of virgin heifers and increased around the onset of lactation. mRNA for GHR was found during all stages examined without outstanding fluctuations. In conclusion, locally produced IGF-I and -II may mediate mammogenesis. The high mammary IGFR-1 mRNA during lactation suggests a role for peripheral IGF-I in maintenance of lactation. The role of IGFBPs in the mammary gland needs further evaluation.  (+info)

Reduced free IGF-I and increased IGFBP-3 proteolysis in Turner syndrome: modulation by female sex steroids. (53/1133)

The bioactivity of the growth hormone-insulin-like growth factor (IGF) system is reduced in Turner syndrome and may explain the reduction seen in final height. We compared levels of free and total IGF-I, immunoreactive and Western ligand blot IGF-binding protein (IGFBP)-3, and IGFBP-3 proteolysis in women with Turner syndrome (n = 23) before (T(B)) and during 6 mo treatment with 17beta-estradiol and norethisterone. An age-matched group of controls (n = 24) was included. Total IGF-I and immunoreactive levels of IGFBP-3 were comparable in T(B) and controls, whereas free IGF-I (P = 0.02) in T(B) was less than in controls. Western ligand blotting (WLB)-IGFBP-3 was significantly lower in T(B) than in controls (P = 0.0005). Accordingly, IGFBP-3 proteolysis was greater in Turner syndrome (P = 0.001). Female sex steroid treatment increased WLB-IGFBP-3 (P = 0.0005), whereas immunoreactive IGFBP-3 and IGFBP-3 proteolysis were normalized (P = 0.004). Free IGF-I remained unchanged (P = 0.8), with a tendency toward a decrease in total IGF-I (P = 0.1). In conclusion, despite normal total IGF-I and immunoreactive IGFBP-3, free serum IGF-I is less and IGFBP-3 proteolysis is greater in Turner syndrome than in controls. During sex steroid treatment, IGFBP-3 proteolysis normalized, without any change in free IGF-I.  (+info)

NMR 15N relaxation of the insulin-like growth factor (IGF)-binding domain of IGF binding protein-5 (IGFBP-5) determined free in solution and in complex with IGF-II. (54/1133)

15N NMR relaxation rates of mini-IGFBP-5, an N-terminal insulin-like growth factor binding domain of the insulin-like growth factor binding protein 5 (IGFBP-5), were analysed at three field strengths using the Lipari-Szabo procedure (see below) and reduced spectral density methods. Isotropic and anisotropic Lipari-Szabo models were analysed and an analytical formula for the overall correlation time for anisotropic molecules is presented. Mini-IGFBP-5 was found to be mainly rigid on fast ps time scales except for 11 unstructured flexible residues at the C-terminus. The insulin-like growth factor binding loop in the apo-protein exhibits small amounts of flexibility on fast time scales (ps to ns) but several loop residues show significant exchange broadening. These loop residues display no exchange broadening in the complex of IGF-II/mini-IGFBP-5. The isotropic overall tumbling time in solution at 31 degrees C of mini-IGFBP-5 complexed to IGF-II is tauc = 18.4 +/- 0.2 ns indicating a strong tendency for aggregation.  (+info)

Identification and characterization of insulin-like growth factor (IGF)-binding protein expression and secretion by adult human adrenocortical cells: differential regulation by IGFs and adrenocorticotropin. (55/1133)

In previous studies we have shown that IGF-II stimulates basal as well as ACTH-induced cortisol secretion from adult human adrenocortical cells more potently than IGF-I, and that both IGFs predominantly stimulate androgen biosynthesis. The steroidogenic effect of IGF-I and IGF-II is mediated through interaction with the IGF-I receptor, and modified by locally produced IGF-binding proteins (IGFBPs). In the present study, we identified and characterized IGFBP synthesis in normal adult human adrenocortical cells in primary culture, and investigated the effect of ACTH and recombinant human IGF-I and -II on the regulation of IGFBP expression and secretion. Using RT-PCR, we identified the mRNA of all six high-affinity IGFBPs, in both adrenocortical tissue and monolayer cell cultures of adrenocortical cells. Using Western ligand and immunoblotting and two-dimensional Western ligand blotting we confirmed the secretion of IGFBP-1, -2, -3, -4 and -5 by adrenocortical cells in primary culture. The quantification of IGFBPs indicated that IGFBP-3 accounts for almost half the binding activity in conditioned medium of unstimulated cells (47%), followed by IGFBP-4 (20%), IGFBP-5 (15%), IGFBP-2 (12%) and IGFBP-1 (6%). After treatment with ACTH, the abundance of IGFBP-1 was upregulated significantly 2.6-fold, while IGFBP-3 was induced only slightly (1.3-fold). IGFBP-2, -4 and -5 remained unchanged. In contrast, IGF-I and -II (6.5 nM) predominantly induced the abundance of IGFBP-5 (2- and 1.6-fold respectively) and IGFBP-3 (2- and 1.7-fold respectively), while IGFBP-1, -2 and -4 were unaltered. The induction of IGFBP-1 and -5 by ACTH and IGFs, respectively, was paralleled by an increase in the amount of IGFBP-1 and -5 mRNA in these cells. In conclusion, all six high-affinity IGFBPs are expressed in the adult human adrenal gland, and the presence of at least five high-affinity IGFBPs has been demonstrated in conditioned medium of adult human adrenocortical cells. Furthermore, the expression and secretion of IGFBP-1 is upregulated by ACTH, whereas IGFBP-5 is induced by IGF-I and -II. Together with earlier findings, these results suggest that IGFBPs play an important modulatory role in the regulation of the differentiated adrenocortical function.  (+info)

IGFs and IGF-binding proteins in short children with steroid-dependent nephrotic syndrome on chronic glucocorticoids: changes with 1 year exogenous GH. (56/1133)

OBJECTIVE: Children with steroid-dependent nephrotic syndrome (SDNS), despite being in remission on glucocorticoids, continue to have growth retardation and short stature. The mechanism is uncertain as both chronic glucocorticosteroids and the nephrotic syndrome may independently affect growth. We investigated the changes in the IGFs and IGF-binding proteins (IGFBPs) in a group of short SDNS children, and studied the changes prospectively with 1 year's treatment with GH. DESIGN AND METHODS: Total and 'free' IGF-I, IGFBP-3 and acid-labile subunit (ALS) were studied in eight SDNS boys (mean age=12.6 years; mean bone age=9.1 years) on long term oral prednisolone (mean dose 0.46 mg/kg per day) before, during, and after, 1 year's treatment with GH (mean dose 0.32 mg/kg per week). Pretreatment comparisons were made with two control groups, one matched for bone age (CBA; mean bone age=9.2 years), and another for chronological age (CCA; mean chronological age=13 years). Subsequently, three monthly measurements of serum and urine IGFBPs were carried out in the GH-treated SDNS patients using Western ligand blot and Western immunoblot. RESULTS: Pre-treatment serum total IGF-I levels and the IGF-I/IGFBP-3 ratio were elevated significantly in SDNS compared with CBA, and were similar to CCA. Serum free IGF-I levels were elevated significantly compared with both control groups, but serum IGFBP-3 did not differ significantly. Urinary IGFBP-2, IGFBP-3 and ALS were detectable in the SDNS children only. With GH treatment, IGF-I and IGFBP-3, but not IGF-II, increased significantly compared with pre-treatment values, and returned to baseline after cessation of GH treatment. Urinary IGFBPs did not change significantly with GH treatment. CONCLUSIONS: There is persistent urinary loss of IGFBP-2, IGFBP-3 and ALS in children with SDNS in remission with growth retardation. However, the significant elevation in serum IGF-I suggests that glucocorticoid-induced resistance to IGF is the main factor responsible for the persistent growth retardation in these children. Exogenous GH was able to overcome this resistance by further increasing serum IGF-I.  (+info)