N-Linked glycosylation and sialylation of the acid-labile subunit. Role in complex formation with insulin-like growth factor (IGF)-binding protein-3 and the IGFs. (1/1133)

Over 75% of the circulating insulin-like growth factors (IGF-I and -II) are bound in 140-kDa ternary complexes with IGF-binding protein-3 (IGFBP-3) and the 84-86-kDa acid-labile subunit (ALS), a glycoprotein containing 20 kDa of carbohydrate. The ternary complexes regulate IGF availability to the tissues. Since interactions of glycoproteins can be influenced by their glycan moieties, this study aimed to determine the role of ALS glycosylation in ternary complex formation. Complete deglycosylation abolished the ability of ALS to associate with IGFBP-3. To examine this further, seven recombinant ALS mutants each lacking one of the seven glycan attachment sites were expressed in CHO cells. All the mutants bound IGFBP-3, demonstrating that this interaction is not dependent on any single glycan chain. Enzymatic desialylation of ALS caused a shift in isoelectric point from 4.5 toward 7, demonstrating a substantial contribution of anionic charge by sialic acid. Ionic interactions are known to be involved in the association between ALS and IGFBP-3. Desialylation reduced the affinity of ALS for IGFBP-3. IGF complexes by 50-80%. Since serum protein glycosylation is often modified in disease states, the dependence of IGF ternary complex formation on the glycosylation state of ALS suggests a novel mechanism for regulation of IGF bioavailability.  (+info)

The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. (2/1133)

The androgen-independent human prostate adenocarcinoma cell line DU-145 proliferates in serum-free medium and produces insulin-like growth factors (IGF)-I, IGF-II, and the IGF type-1 receptor (IGF-1R). They also secrete three IGF-binding proteins (IGFBP), IGFBP-2, -3, and -4. Of these, immunoblot analysis revealed selective proteolysis of IGFBP-3, yielding fragments of 31 and 19 kDa. By using an anti-IGF-I-specific monoclonal antibody (mAb), we detect surface receptor-bound IGF-I on serum-starved DU-145 cells, which activates IGF-1R and triggers a mitogenic signal. Incubation of DU-145 cells with blocking anti-IGF-I, anti-IGF-II, or anti-IGF-I plus anti-IGF-II mAb does not, however, inhibit serum-free growth of DU-145. Conversely, anti-IGF-1R mAb and IGFBP-3 inhibit DNA synthesis. IGFBP-3 also modifies the DU-145 cell cycle, decreases p34(cdc2) levels, and IGF-1R autophosphorylation. The antiproliferative IGFBP-3 activity is not IGF-independent, since des-(1-3)IGF-I, which does not bind to IGFBP-3, reverses its inhibitory effect. DU-145 also secretes the matrix metalloproteinase (MMP)-9, which can be detected in both a soluble and a membrane-bound form. Matrix metalloproteinase inhibitors, but not serpins, abrogate DNA synthesis in DU-145 associated with the blocking of IGFBP-3 proteolysis. Overexpression of an antisense cDNA for MMP-9 inhibits 80% of DU-145 cell proliferation that can be reversed by IGF-I in a dose-dependent manner. Inhibition of MMP-9 expression is also associated with a decrease in IGFBP-3 proteolysis and with reduced signaling through the IGF-1R. Our data indicate an IGF autocrine loop operating in DU-145 cells, specifically modulated by IGFBP-3, whose activity may in turn be regulated by IGFBP-3 proteases such as MMP-9.  (+info)

Growth factors and goitrogenesis. (3/1133)

By combining data from studies of multinodular non-toxic goitre (MNTG) with data from rat models of goitre induction and in vitro models, a map of the growth factors involved in goitrogenesis has been constructed. We have addressed the roles of the insulin-like growth factors, transforming growth factors, fibroblast growth factors, endothelins, etc. We hypothesise that an imbalance in the interactions between the various growth factor axes exists in MNTG which favours cell replication. Thyrotrophin, although not significantly elevated in MNTG, exerts critical effects through interactions with autocrine and paracrine factors and their receptors. Expansion of the thyroidal vascular bed through angiogenesis is closely co-ordinated with follicular cell expansion and folliculoneogenesis, and while the integrated paracrine actions of fibroblast growth factors, vascular endothelial growth factor and endothelin probably play central roles, additional, as yet elusive, factors are probably involved. The combination of in vitro and in vivo approaches, designed to address specific questions, will undoubtedly continue to prove invaluable in dissecting further the complex interactions that exist between these growth factors, their binding proteins and receptors in goitrogenesis.  (+info)

The contributions of oestrogen and growth factors to increased adrenal androgen secretion in polycystic ovary syndrome. (4/1133)

Adrenal hyperandrogenism is prevalent in many women with polycystic ovary syndrome (PCOS), although the expression of this enhanced secretion may be heterogeneous. Since no single factor acts in isolation, this study was performed to assess the influence of oestradiol (total and unbound), insulin, insulin-like growth factor (IGF)-I, IGF-II and the binding proteins IGFBP-I, and IGFBP-3, on basal and adrenocorticotrophic hormone (ACTH) stimulated adrenal androgen secretion in 25 women with PCOS and 10 matched ovulatory controls. Women with PCOS exhibited elevations of all androgens as well as unbound oestradiol, insulin and non-IGFBP-1 bound IGF-I. Positive correlations were noted between oestrogen and basal and ACTH stimulated delta 5 adrenal androgens. Serum IGF-I was only correlated with basal dehydroepiandrosterone sulphate (DHEA-S), while insulin exhibited a strong correlation with the delta 4 pathway and androstenedione formation in particular. This correlation was also confirmed by dividing the PCOS group into those women with and without hyperinsulinaemia. The activity of 17,20 lyase favouring androstenedione was increased in the hyperinsulinaemic women. By multivariate analyses, body mass index did not influence these findings. Although there are inherent difficulties in making major conclusions based on correlative analyses, it is suggested that oestrogen may have a greater influence on enhancing delta 5 adrenal androgen secretion, and insulin a greater effect on the delta 4 pathway. In turn, the relative importance of these influences may contribute to the heterogeneous nature of adrenal hyperandrogenism in PCOS.  (+info)

Insulin-like growth factors prevent cytokine-mediated cell death in isolated islets of Langerhans from pre-diabetic non-obese diabetic mice. (5/1133)

Interleukin-1beta (IL-1beta), tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) contribute to the initial stages of the autoimmune destruction of pancreatic beta cells. IL-1beta is released by activated macrophages resident within islets, and its cytotoxic actions include a stimulation of nitric oxide (NO) production and the initiation of apoptosis. Insulin-like growth factors (IGFs)-I and -II prevent apoptosis in non-islet tissues. This study investigated whether IGFs are cytoprotective for isolated islets of Langerhans from non-obese diabetic mice (NOD) mice exposed to cytokines. Pancreatic islets isolated from 5-6-week-old, pre-diabetic female NOD mice were cultured for 48 h before exposure to IL-1beta (1 ng/ml), TNF-alpha (5 ng/ml), IFN-gamma (5 ng/ml) or IGF-I or -II (100 ng/ml) for a further 48 h. The incidence of islet cell apoptosis was increased in the presence of each cytokine, but this was significantly reversed in the presence of IGF-I or -II (IL-1beta control 3.5+/-1.6%, IL-1beta 1 ng/ml 27.1+/-5.8%, IL-1beta+IGF-I 100 ng/ml 4.4+/-2.3%, P<0.05). The majority of apoptotic cells demonstrated immunoreactive glucose transporter 2 (GLUT-2), suggesting that they were beta cells. Islet cell viability was also assessed by trypan blue exclusion. Results suggested that apoptosis was the predominant cause of cell death following exposure to each of the cytokines. Co-incubation with either IGF-I or -II was protective against the cytotoxic effects of IL-1beta and TNF-alpha, but less so against the effect of IFN-gamma. Exposure to cytokines also reduced insulin release, and this was not reversed by incubation with IGFs. Immunohistochemistry showed that IGF-I was present in vivo in islets from pre-diabetic NOD mice which did not demonstrate insulitis, but not in islets with extensive immune infiltration. Similar results were seen for IGF-binding proteins (IGFBPs). These results suggest that IGFs protect pre-diabetic NOD mouse islets from the cytotoxic actions of IL-1beta, TNF-alpha and IFN-gamma by mechanisms which include a reduction in apoptosis.  (+info)

Expression of the insulin-like growth factors and their receptors in adenocarcinoma of the colon. (6/1133)

AIMS: To study changes in the expression of insulin-like growth factors (IGFs) and their receptors, as well as production of the IGF-I and IGF-II polypeptides, in adenocarcinoma of the colon. METHODS: Malignant tissue obtained at operation was used. Total RNA was extracted and specific IGF-I and IGF-II and their receptor mRNAs were measured by a solution hybridisation RNase protection assay. IGF-I and IGF-II polypeptides were measured by specific immunoassays. RESULTS: All normal tissues expressed IGF-II, IGF-I receptor, and IGF-II/mannose-6-phosphate (Man-6-P) receptor. IGF-I mRNA could not be detected but the polypeptide was present in small but equal amounts in normal and malignant tissue. IGF-II was expressed 40 times more abundantly in colonic tumours than in adjacent normal tissue and the concentration of the corresponding polypeptide was twice as high in the malignant tissue. IGF-I receptor expression was increased by a factor of 2.5 and IGF-II/Man-6-P receptor by a factor of 4. CONCLUSIONS: This study confirms that in adenocarcinoma of the human colon there is increased expression of IGF-I receptor and IGF-II. Furthermore, IGF-II/Man-6-P receptor message is increased and the increase in IGF-II message is accompanied by a doubling of the IGF-II protein in the tumour tissue compared with the adjacent normal tissue. These findings suggest that the IGF-II/Man-6-P receptor may also be involved in development of adenocarcinoma of the colon. There is rapidly accumulating evidence implicating the IGF system in the development of malignancy of the large bowel.  (+info)

Tissue-specific expression of messenger ribonucleic acids for insulin-like growth factors and insulin-like growth factor-binding proteins during perinatal development of the rat uterus. (7/1133)

Insulin-like growth factor (IGF)-I and IGF-II play a number of important roles in growth and differentiation, and IGF-binding proteins (IGFBPs) modulate IGF biological activity. IGF-I has been shown previously to be essential for normal uterine development. Therefore, we used in situ hybridization assays to characterize the unique tissue- and developmental stage-specific pattern of expression for each IGF and IGFBP gene in the rat uterus during perinatal development (gestational day [GD]-20 to postnatal day [PND]-24). IGF-I and IGFBP-1 mRNAs were expressed in all uterine tissues throughout this period. IGFBP-3 mRNA was not detectable at GD-20 but became detectable beginning at PND-5, and the signal intensity appeared to increase during stromal and muscle development. IGFBP-4 mRNA was abundant throughout perinatal development in the myometrium and in the stroma, particularly near the luminal epithelium. IGFBP-5 mRNA was abundantly expressed in myometrium throughout perinatal development. IGFBP-6 mRNA was detected throughout perinatal development in both the stroma and myometrium in a diffuse expression pattern. IGF-II and IGFBP-2 mRNAs were not detected in perinatal uteri. Our results suggest that coordinated temporal and spatial expression of IGF-I and its binding proteins (IGFBP-1,-3,-4,-5, and -6) could play important roles in perinatal rodent uterine development.  (+info)

Developing Schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB. (8/1133)

Although Schwann cell precursors from early embryonic nerves die in the absence of axonal signals, Schwann cells in older nerves can survive in the absence of axons in the distal stump of transected nerves. This is crucially important, because successful axonal regrowth in a damaged nerve depends on interactions with living Schwann cells in the denervated distal stump. Here we show that Schwann cells acquire the ability to survive without axons by establishing an autocrine survival loop. This mechanism is absent in precursors. We show that insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB are important components of this autocrine survival signal. The secretion of these factors by Schwann cells has significant implications for cellular communication in developing nerves, in view of their known ability to regulate survival and differentiation of other cells including neurons.  (+info)