Accumulation of plastid lipid-associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. (49/214)

Plastid lipid-associated proteins, also termed fibrillin/CDSP34 proteins, are known to accumulate in fibrillar-type chromoplasts such as those of ripening pepper fruit, and in leaf chloroplasts from Solanaceae plants under abiotic stress conditions. It is shown here that treatments generating active oxygen species (high light combined with low temperature, gamma irradiation or methyl viologen treatment) result in potato CDSP34 gene induction and protein accumulation in leaves. Using transgenic tomato plants containing the pepper fibrillin promoter, a significant increase in promoter activity in leaves subjected to biotic stress, namely bacterial infections, was observed. In WT, a higher level of the endogenous fibrillin/CDSP34 protein is also observed after infection by E. chrysanthemi strain 3739. In addition to stress-related induction, a progressive increase in the fibrillin promoter activity is noticed during ageing in various tomato photosynthetic tissues and this increase correlates with a higher abundance of the endogenous protein in WT leaves. It is proposed that a mechanism related to oxidative events plays an essential role in the regulation of fibrillin/CDSP34 genes during stress and also during development. Using a biolistic transient expression assay, the pepper fibrillin promoter is found to be active in various dicot species, but not in monocots. Further, substantially increased levels of fibrillin/ CDSP34 proteins are shown in various dicotyledonous and monocotyledonous plants in response to water deficit.  (+info)

Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. (50/214)

The Agrobacterium-mediated transient expression assay in intact tissues has emerged as a rapid and useful method to analyze genes and gene products in plants. In many cases, high levels of active protein can be produced without the need to produce transgenic plants. In this study, a series of tools were developed to enable strong or weak induction of RNA silencing and to suppress RNA silencing in the absence of stable transgenes. Transient delivery of a gene directing production of a double-stranded green fluorescent protein (GFP) transcript rapidly induced RNA silencing of a codelivered GFP reporter gene, effectively preventing accumulation of GFP protein and mRNA. RNA silencing triggered by the strong dsGFP inducer was partially inhibited by the tobacco etch virus silencing suppressor, P1/HC-Pro. In the absence of the strong double-stranded GFP inducer, the functional GFP gene served as a weak RNA silencing inducer in the transient assay, severely limiting accumulation of the GFP mRNA over time. The weak silencing induced by the GFP gene was suppressed by P1/HC-Pro. These results indicate RNA silencing can be triggered by a variety of inducers and analyzed entirely using transient gene delivery systems. They also indicate that RNA silencing may be a significant limitation to expression of genes in the Agrobacterium-mediated transient assay but that this limitation can be overcome by using RNA silencing suppressors.  (+info)

Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. (51/214)

Nitric oxide (NO) is a very active molecule involved in many and diverse biological pathways where it has proved to be protective against damages provoked by oxidative stress conditions. In this work, we studied the effect of two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine SNP-treated on the response of wheat (Triticum aestivum) to water stress conditions. After 2 and 3 h of drought, detached wheat leaves pretreated with 150 microM SNP retained up to 15% more water than those pretreated with water or NO(2)(-)/NO(3)(-). The effect of SNP treatment on water retention was also found in wheat seedlings after 7 d of drought. These results were consistent with a 20% decrease in the transpiration rate of SNP-treated detached wheat leaves for the same analyzed time. In parallel experiments, NO was also able to induce a 35%, 30%, and 65% of stomatal closure in three different species, Tradescantia sp. (monocotyledonous) and two dicotyledonous, Salpichroa organifolia and fava bean (Vicia faba), respectively. In SNP-treated leaves of Tradescantia sp., the stomatal closure was correlated with a 10% increase on RWC. Ion leakage, a cell injury index, was 25% lower in SNP-treated wheat leaves compared with control ones after the recovery period. Carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), a specific NO scavenger, reverted SNP action by restoring the transpiration rate, stomatal aperture, and the ion leakage to the level found in untreated leaves. Northern-blot analysis showed that SNP-treated wheat leaves display a 2-fold accumulation of a group three late embryogenesis abundant transcript with respect to control leaves both after 2 and 4 h of drought periods. All together, these results suggest that the exogenous application of NO donors might confer an increased tolerance to severe drought stress conditions in plants.  (+info)

Dark green islands in plant virus infection are the result of posttranscriptional gene silencing. (52/214)

Dark green islands (DGIs) are a common symptom of plants systemically infected with a mosaic virus. DGIs are clusters of green leaf cells that are free of virus but surrounded by yellow, virus-infected tissue. We report here on two lines of evidence showing that DGIs are caused by posttranscriptional gene silencing (PTGS). First, transcripts of a transgene derived from the coat protein of Tamarillo mosaic potyvirus (TaMV) were reduced in DGIs relative to adjacent yellow tissues when the plants were infected with TaMV. Second, nontransgenic plants coinfected with TaMV and a heterologous virus vector carrying TaMV sequences showed reduced titers of the vector in DGIs compared with surrounding tissues. DGIs also were compared with recovered tissue at the top of transgenic plants because recovery has been shown previously to involve PTGS. Cytological analysis of the cells at the junction between recovered and infected tissue was undertaken. The interface between recovered and infected cells had very similar features to that surrounding DGIs. We conclude that DGIs and recovery are related phenomena, differing in their ability to amplify or transport the silencing signal.  (+info)

Ancient diversification of the Pto kinase family preceded speciation in Solanum. (53/214)

Recent phylogenetic analyses of the nucleotide binding sites (NBS)-leucine-rich repeats (LRR) class of plant disease resistance (R) genes suggest that these genes are ancient and coexist next to susceptibility alleles at resistance loci. Another class of R genes encodes serine-threonine protein kinases related to Pto that were originally identified from wild relatives of tomato. In this study, we exploit the highly diverse genus Solanum to identify Pto-like sequences and test various evolutionary scenarios for Pto-like genes. Polymerase chain reaction amplifications with the use of primers that were developed on the basis of conserved and variable regions of Pto revealed an extensive Pto gene family and yielded 32 intact Pto-like sequences from six Solanum species. Furthermore, Pto-like transcripts were detected in the leaf tissue of all tested plants. The kinase consensus and autophosphorylation sites were highly conserved, in contrast to the kinase activation domain, which is involved in ligand recognition in Pto. Phylogenetic analyses distinguished nine classes of Pto-like genes and revealed that orthologs were more similar than paralogs, suggesting that the Pto gene family evolved through a series of ancient gene duplication events prior to speciation in Solanum. Thus, like the NBS-LRR class, the kinase class of R genes is highly diverse and ancient.  (+info)

Isolation and characterization of kinase interacting protein 1, a pollen protein that interacts with the kinase domain of PRK1, a receptor-like kinase of petunia. (54/214)

Many receptor-like kinases have been identified in plants and have been shown by genetic or transgenic knockouts to play diverse physiological roles; however, to date, the cytosolic interacting proteins of relatively few of these kinases have been identified. We have previously identified a predominantly pollen-expressed receptor-like kinase of petunia (Petunia inflata), named PRK1, and we have shown by the antisense RNA approach that it is required for microspores to progress from the unicellular to bicellular stage. To investigate the PRK1-mediated signal transduction pathway, PRK1-K cDNA, encoding most of the cytoplasmic domain of PRK1, was used as bait in yeast (Saccharomyces cerevisiae) two-hybrid screens of pollen/pollen tube cDNA libraries of petunia. A protein named kinase interacting protein 1 (KIP1) was found to interact very strongly with PRK1-K. This interaction was greatly reduced when lysine-462 of PRK1-K, believed to be essential for kinase activity, was replaced with arginine (the resulting protein is named PRK1-K462R). The amino acid sequence of KIP1 deduced from full-length cDNA contains an EF-hand Ca(2+)-binding motif and nine predicted coiled-coil regions. The yeast two-hybrid assay and affinity chromatography showed that KIP1 interacts with itself to form a dimer or higher multimer. KIP1 is present in a single copy in the genome, and is expressed predominantly in pollen with a similar temporal pattern to PRK1. In situ hybridization showed that PRK1 and KIP1 transcripts were localized in the cytoplasm of pollen. PRK1-K phosphorylated KIP1-NT (amino acids 1--716), whereas PRK1-K462R only weakly phosphorylated KIP1-NT in vitro.  (+info)

Intragenic recombination generated two distinct Cf genes that mediate AVR9 recognition in the natural population of Lycopersicon pimpinellifolium. (55/214)

Resistance gene Cf-9 of cultivated tomato (Lycopersicon esculentum) confers recognition of the AVR9 elicitor protein of the fungal pathogen Cladosporium fulvum. The Cf-9 locus, containing Cf-9 and four homologs (Hcr9s), originates from Lycopersicon pimpinellifolium (Lp). We examined naturally occurring polymorphism in Hcr9s that confer AVR9 recognition in the Lp population. AVR9 recognition occurs frequently throughout this population. In addition to Cf-9, we discovered a second gene in Lp, designated 9DC, which also confers AVR9 recognition. Compared with Cf-9, 9DC is more polymorphic, occurs more frequently, and is more widely spread throughout the Lp population, suggesting that 9DC is older than Cf-9. The sequences of Cf-9 and 9DC suggest that Cf-9 evolved from 9DC by intragenic recombination between 9DC and another Hcr9. The fact that the 9DC and Cf-9 proteins differ in 61 aa residues, and both mediate recognition of AVR9, shows that in nature Hcr9 proteins with the same recognitional specificity can vary significantly.  (+info)

Polyamine binding to proteins in oat and Petunia protoplasts. (56/214)

Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.  (+info)