Clinical and immunochemical study of the serum IgG fraction not precipitated in a zinc-sodium salicylate reagent. (1/198)

A reagent made of zinc sulphate (0-08 M) in a 0-4 M sodium salicylate solution at pH 7-3 precipitated most of the IgG when a small volume of human serum was added. Sera with normal IgG levels or polyclonal hyperglobulinaemia showed a close correlation between total IgG and zinc-precipitated IgG (r = + 0-95). In clinical material, not including IgG myeloma, zinc-soluble IgG varied between 0 and 6 mg/ml and was independent of the IgG serum concentration. In 31 normal subjects the average IgG concentration, as determined by the Technicon immunonephelometric method, was 10-2 +/- 1-7 mg/ml for total IgG and 2-2 +/- 1-0 mg/ml for the soluble fraction. Among 173 sera, including 24 from cord blood, 16 from pregnant women, and 133 from patients with miscellaneous diseases, no pathological conditions except three cases of IgG myeloma were found with a zinc-soluble IgG definitely above the normal values; zinc-soluble IgG levels were often low in patients with hyperglobulinaemia, and the difference was highly significant in liver disease. kappa and gamma light chains as well as the four IgG-Hp chain subclasses were found in both zinc-soluble fractions of normal IgG. A study of myeloma monoclonal IgG showed that globulins of classes 1, 3, and 4 could be either soluble or insoluble in the zinc reagent. One, G2, was mainly insoluble. Hexose and antistreptolysin contents per milligram normal IgG were not significantly different in either fraction. It is suggested that zinc-soluble IgG consists of the recently synthesized molecules, the zinc-solubility of which has not yet been decreased by protein association, lipid interaction, antigen binding, or enzymatic denaturation. Within this hypothesis, a low level of soluble IgG would mean either an increased precatabolic protein or a decreased synthesis.  (+info)

Effect of anti-inflammatory drugs on sulphated glycosaminoglycan synthesis in aged human articular cartilage. (2/198)

The anti-inflammatory drugs, sodium salicylate, indomethacin, hydrocortisone, ibuprofen, and flurbiprofen, were examined for their effects on sulphated glycosaminoglycan synthesis in aged human cartilage in vitro. Cartilage was obtained from femoral heads removed during surgery and drug effects were found to vary significantly from one head to another. Statistical analysis of the results showed that sodium salicylate exhibits concentration-dependent inhibition of glycosaminoglycan synthesis over the concentration range used. Indomethacin, hydrocortisone, and ibuprofen, at concentrations comparable to those attained in man, caused a statistically significant depression of sulphated glycosaminoglycan synthesis in cartilage from some femoral heads but not others, reflecting the variable response of human articular cartilage to anti-inflammatory drugs. Sodium salicylate and indomethacin at higher doses produced significant (Pless than 0-005) inhibition of sulphated glycosaminoglycan synthesis in all femoral heads studied. The results for flurbiprofen were less conclusive; this compound appears not to inhibit glycosaminoglycan synthesis over the concentration range used.  (+info)

Sodium salicylate activates caspases and induces apoptosis of myeloid leukemia cell lines. (3/198)

Nonsteroidal antiinflammatory agents (NSAIA) have been shown to exert potent chemopreventive activity against colon, lung, and breast cancers. In this study, we show that at pharmacological concentrations (1 to 3 mmol/L) sodium salicylate (Na-Sal) can potently induce programmed cell death in several human myeloid leukemia cell lines, including TF-1, U937, CMK-1, HL-60, and Mo7e. TF-1 cells undergo rapid apoptosis on treatment with Na-Sal, as indicated by increased annexin V binding capacity, cpp-32 (caspase-3) activation, and cleavage of poly (ADP-ribose) polymerase (PARP) and gelsolin. In addition, the expression of MCL-1, an antiapoptotic member of the BCL-2 family, is downregulated during Na-Sal-induced cell death, whereas the expression of BCL-2, BAX, and BCL-XL is unchanged. Z-VAD, a potent caspase inhibitor, prevents the cleavage of PARP and gelsolin and rescues cells from Na-Sal-induced apoptosis. In addition, we show that Na-Sal accelerates growth factor withdrawal-induced apoptosis and synergizes with daunorubicin to induce apoptosis in TF-1 cells. Thus, our data provide a potential mechanism for the chemopreventive activity of NSAIA and suggest that salicylates may have therapeutic potential for the treatment of human leukemia.  (+info)

Suppression of inducible cyclooxygenase 2 gene transcription by aspirin and sodium salicylate. (4/198)

The pharmacological action of salicylate cannot be explained by its inhibition of cyclooxygenase (COX) activity. In this report, the effects of aspirin and sodium salicylate on COX-2 expressions in human umbilical vein endothelial cells and foreskin fibroblasts were evaluated. Aspirin and sodium salicylate at therapeutic concentrations equipotently blocked COX-2 mRNA and protein levels induced by interleukin-1beta and phorbol 12-myristate 13-acetate. The suppressing effect was more pronounced in cultured cells deprived of fetal bovine serum for 24 h, suggesting that it may be cell cycle related. Salicylate inhibited nascent COX-2 transcript synthesis but had no effect on COX-2 mRNA stability. It inhibited COX-2 promoter activity in a concentration-dependent manner. In mice pretreated with aspirin (10 and 30 mg/kg), followed by challenge with lipopolysaccharide, COX-2 mRNA expression in peritoneal macrophages was markedly suppressed. These findings suggest that salicylate exerts its antiinflammatory action in part by suppressing COX-2 induction, thereby reducing the synthesis of proinflammatory prostaglandins.  (+info)

Inhibition of mast cell-dependent anaphylaxis by sodium salicylate. (5/198)

Sodium salicylate (NaSal) is a commonly used agent with a wide pharmacological spectrum. The objective of the present study was to investigate the effect of NaSal on anaphylaxis. NaSal (10-1 and 1 mm) significantly inhibited systemic anaphylaxis induced by compound 48/80 in rats. NaSal also significantly inhibited local anaphylaxis activated by anti-dinitrophenyl (DNP) immunoglobulin E (IgE). NaSal (10-1 and 1 mm) significantly inhibited histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. Northern-blot analysis demonstrated that a significantly reduced level of the mRNA of L-histidine decarboxylase was expressed in mast cells treated with NaSal, compared with that without NaSal. NaSal (10-2 and 10-1 mm) had a significant inhibitory effect on anti-DNP IgE-induced tumour necrosis factor-alpha secretion from RPMC. The level of cyclic AMP in RPMC, when NaSal (1 mm) was added, transiently and significantly increased about sixfold compared with that of basal cells. These results suggest a possible use of NaSal in managing mast cell-dependent anaphylaxis.  (+info)

Induction of stromelysin gene expression by tumor necrosis factor alpha is inhibited by dexamethasone, salicylate, and N-acetylcysteine in synovial fibroblasts. (6/198)

Proinflammatory cytokines, altered connective tissue metabolism, and overexpression of matrix metalloproteinases (MMPs) such as stromelysin compared to tissue inhibitors of metalloproteinases (TIMPs) result in synovial inflammation and erosion of arthritic cartilage. Tumor necrosis factor alpha (TNF-alpha) is a major synovial inflammatory mediator responsible for inhibiting extracellular matrix (ECM) synthesis and stimulating degradation of cartilage ECM by activated MMPs in arthritic joints. To suppress these effects and to gain insight into the mechanism of TNF-alpha action, we identified the inhibitors of TNF-alpha stimulation of stromelysin gene expression. In bovine synovial fibroblasts, TNF-alpha did not affect a recently identified inhibitor, TIMP-3, but induced stromelysin mRNA expression in a dose- and time-dependent fashion (3- to 5-fold) which required de novo protein synthesis. Stimulation by TNF-alpha was potently inhibited (99-100%) by the synthetic glucocorticoid, dexamethasone. Sodium salicylate dose-dependently inhibited (100%) the TNF-alpha action. Indomethacin and ibuprofen were partially inhibitory. Free radical scavenger antioxidant, N-acetylcysteine (but not other antioxidants) also suppressed the TNF-alpha induction (36-100%) of stromelysin suggesting involvement of reactive oxygen species in the induction process. TNF-alpha induction of stromelysin gene expression can therefore be inhibited at the gene expression level by several pharmacological agents which are likely to function via arachidonic acid metabolites, free radical scavenging or interference with the activator protein 1, polyoma virus enhancer A-binding protein 3, and nuclear factor kappaB classes of transcription factors. Our results may help to elucidate the mechanism of TNF-alpha action and explain the beneficial role of these agents in the treatment of inflammatory diseases.  (+info)

Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFkappaB. (7/198)

The antiinflammatory action of aspirin generally has been attributed to direct inhibition of cyclooxygenases (COX-1 and COX-2), but additional mechanisms are likely at work. These include aspirin's inhibition of NFkappaB translocation to the nucleus as well as the capacity of salicylates to uncouple oxidative phosphorylation (i.e., deplete ATP). At clinically relevant doses, salicylates cause cells to release micromolar concentrations of adenosine, which serves as an endogenous ligand for at least four different types of well-characterized receptors. Previously, we have shown that adenosine mediates the antiinflammatory effects of other potent and widely used antiinflammatory agents, methotrexate and sulfasalazine, both in vitro and in vivo. To determine in vivo whether clinically relevant levels of salicylate act via adenosine, via NFkappaB, or via the "inflammatory" cyclooxygenase COX-2, we studied acute inflammation in the generic murine air-pouch model by using wild-type mice and mice rendered deficient in either COX-2 or p105, the precursor of p50, one of the components of the multimeric transcription factor NFkappaB. Here, we show that the antiinflammatory effects of aspirin and sodium salicylate, but not glucocorticoids, are largely mediated by the antiinflammatory autacoid adenosine independently of inhibition of prostaglandin synthesis by COX-1 or COX-2 or of the presence of p105. Indeed, both inflammation and the antiinflammatory effects of aspirin and sodium salicylate were independent of the levels of prostaglandins at the inflammatory site. These experiments also provide in vivo confirmation that the antiinflammatory effects of glucocorticoids depend, in part, on the p105 component of NFkappaB.  (+info)

Inhibition of cytokine gene expression by sodium salicylate in a macrophage cell line through an NF-kappaB-independent mechanism. (8/198)

Macrophage-derived cytokines and chemokines are involved at multiple steps of immune and inflammatory responses, and the transcriptional factor NF-kappaB appears to play a pivotal role in their coordinated upregulation. The anti-inflammatory agents salicylates have been proposed to act in part by inhibiting NF-kappaB. We have therefore studied the effects of sodium salicylate on lipopolysaccharide (LPS)-induced kappaB-binding activity and on cytokine and chemokine gene expression in the RAW264.7 murine macrophage cell line and compared them to those of an established NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). PDTC (100 microM) completely abrogated LPS-induced kappaB-binding activity and also profoundly inhibited the induction of interleukin 1alpha (IL-1alpha), IL-1beta, IL-6, IL-10, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and MCP-1 and, to a lesser extent, leukemia inhibitory factor, RANTES, and IL-1Ra. In contrast, sodium salicylate (15 to 20 mM) had no effect on NF-kappaB activation but, nevertheless, suppressed several LPS-induced cytokine and chemokine genes to a degree similar to that obtained with PDTC. However, compared to PDTC, sodium salicylate caused significantly less inhibition of IL-1Ra and IL-10 gene expression after LPS stimulation. Neither LPS-induced MIP-1alpha, MIP-1beta, nor MIP-2 was significantly affected by PDTC or sodium salicylate, demonstrating that NF-kappaB is dispensable for the transcriptional regulation of these genes by LPS. In summary, these results suggest that both NF-kappaB-dependent and NF-kappaB-independent pathways are necessary for the induction by LPS of a complex cytokine and chemokine response. In the RAW264.7 macrophage cell line, suprapharmacological concentrations of sodium salicylate exert a potent inhibitory effect on LPS-induced cytokine gene induction but appear to accomplish this by interfering with NF-kappaB-independent pathways of activation.  (+info)