Regulation of homologous recombination: Chi inactivates RecBCD enzyme by disassembly of the three subunits. (49/8610)

We report here an unusual mechanism for enzyme regulation: the disassembly of all three subunits of RecBCD enzyme after its interaction with a Chi recombination hot spot. The enzyme, which is essential for the major pathway of recombination in Escherichia coli, acts on linear double-stranded DNA bearing a Chi site to produce single-stranded DNA substrates for strand exchange by RecA protein. We show that after reaction with DNA bearing Chi sites, RecBCD enzyme is inactivated and the three subunits migrate as separate species during glycerol gradient ultracentrifugation or native gel electrophoresis. This Chi-mediated inactivation and disassembly of purified RecBCD enzyme can account for the previously reported Chi-dependent loss of Chi activity in E. coli cells containing broken DNA. Our results support a model of recombination in which Chi regulates one RecBCD enzyme molecule to make a single recombinational exchange ('one enzyme-one exchange' hypothesis).  (+info)

An Arabidopsis GSK3/shaggy-like gene that complements yeast salt stress-sensitive mutants is induced by NaCl and abscisic acid. (50/8610)

GSK3/shaggy-like genes encode kinases that are involved in a variety of biological processes. By functional complementation of the yeast calcineurin mutant strain DHT22-1a with a NaCl stress-sensitive phenotype, we isolated the Arabidopsis cDNA AtGSK1, which encodes a GSK3/shaggy-like protein kinase. AtGSK1 rescued the yeast calcineurin mutant cells from the effects of high NaCl. Also, the AtGSK1 gene turned on the transcription of the NaCl stress-inducible PMR2A gene in the calcineurin mutant cells under NaCl stress. To further define the role of AtGSK1 in the yeast cells we introduced a deletion mutation at the MCK1 gene, a yeast homolog of GSK3, and examined the phenotype of the mutant. The mck1 mutant exhibited a NaCl stress-sensitive phenotype that was rescued by AtGSK1. Also, constitutive expression of MCK1 complemented the NaCl-sensitive phenotype of the calcineurin mutants. Therefore, these results suggest that Mck1p is involved in the NaCl stress signaling in yeast and that AtGSK1 may functionally replace Mck1p in the NaCl stress response in the calcineurin mutant. To investigate the biological function of AtGSK1 in Arabidopsis we examined the expression of AtGSK1. Northern-blot analysis revealed that the expression is differentially regulated in various tissues with a high level expression in flower tissues. In addition, the AtGSK1 expression was induced by NaCl and exogenously applied ABA but not by KCl. Taken together, these results suggest that AtGSK1 is involved in the osmotic stress response in Arabidopsis.  (+info)

Pre-mRNA and mRNA binding of human nuclear DNA helicase II (RNA helicase A). (51/8610)

Nuclear DNA helicase II (NDH II), alternatively named RNA helicase A, seems to function as a pre-mRNA and mRNA binding protein in human cells. Immunofluorescence studies of NDH II gave a highly diffused nucleoplasmic staining that was similar to that of hnRNP A1 but differed from the localization of the RNA splicing factor Sc-35. Upon transcriptional inhibition, NDH II migrated from the nucleus into the cytoplasm. During mitosis, NDH II was released into the cytoplasm during pro- to metaphase, and was gradually recruited back into telophase nuclei. The timing of nuclear import of NDH II at telophase was found to be later than that of hnRNP A1 but paralleled that of Sc-35. At the ultrastructural level, both NDH II and hnRNP A1 were identified within perichromatin ribonucleoparticle fibrils. However, the subnuclear distributions of NDH II and hnRNP A1 were not overlapping. NDH II could be extracted together with poly(A)-containing mRNA from HeLa cell nuclei and, to a much lesser extent, from the cytoplasm. Following transcriptional inhibition, NDH II was preferentially associated with mRNA from the cytosol, which biochemically confirmed the microscopic observations. Although NDH II is mainly a nuclear enzyme, it is apparently not associated with the nuclear matrix, since it could be extracted with 2 M NaCl from DNase I-treated nuclei. Our cellular and biochemical observations strongly suggest that NDH II is a pre-mRNA and mRNA binding protein. Its significant affinity for ssDNA, but not for dsDNA, points to a transient role in DNA binding during the process of transcript formation. According to our model, single-stranded DNA might be necessary to retain NDH II in the nuclear compartment.  (+info)

Subcellular heterogeneity of mitochondrial membrane potential: relationship with organelle distribution and intercellular contacts in normal, hypoxic and apoptotic cells. (52/8610)

The subcellular heterogeneity of mitochondrial membrane potential (mDelta psi) was investigated in confluent and sub-confluent cultures of four cell types (human astrocytes, HEp-2, MDCK and Vero cells) in normal growth conditions, hypoxia and apoptosis. The distribution of high-polarized mitochondria, detected by the potential-sensitive probe JC-1, was found to depend on: (1) the proximity to the cell edge; (2) the local absence of cell-cell contacts; and (3) the local absence of acidic vesicles. Both hypoxia and apoptosis produced a general mDelta psi increase with different redistributions of high-polarized mitochondria. Hypoxic cells maintained high-polarized mitochondria for over 24 hours, until cells underwent necrosis. On the other hand, apoptotic cells showed an unexpected convergence of high-polarized mitochondria into an extremely packed mass at one side of the nucleus, in a stage preceding nuclear condensation, but correlated to the retraction of cell-cell contacts.  (+info)

Interactions between gastric volume and duodenal nutrients in the control of liquid gastric emptying. (53/8610)

We examined the relationships between gastric volume and duodenal glucose load in the regulation of gastric emptying in adult male rhesus monkeys. Intragastric glucose loads (0.125 g/ml) of volumes ranging from 150 to 375 ml empty from the stomach at the same rate from 20 to 120 min. However, to achieve these equivalent emptying rates, progressively larger volumes were emptied in the initial 20 min with increasing gastric volume. Duodenal glucose infusions dose dependently inhibited the 10-min emptying of various volumes of intragastric saline. Although increasing gastric volume resulted in increased emptying, duodenal glucose right-shifted the relationship between initial gastric volume and volume emptied. These data demonstrate that liquid nutrient gastric emptying represents an interaction between gastric volume and nutrient-induced duodenal feedback. For controlled duodenal caloric delivery rates to be established, sufficient nutrient emptying must occur to increase the magnitude of duodenal feedback to withhold a given gastric volume.  (+info)

Renal arteriolar Na+/Ca2+ exchange in salt-sensitive hypertension. (54/8610)

The present studies were performed to assess Na+/Ca2+ exchange activity in afferent and efferent arterioles from Dahl/Rapp salt-resistant (R) and salt-sensitive (S) rats. Renal arterioles were obtained by microdissection from S and R rats on either a low-salt (0.3% NaCl) or high-salt (8.0% NaCl) diet. On the high-salt diet, S rats become markedly hypertensive. Cytosolic calcium concentration ([Ca2+]i) was measured in fura 2-loaded arterioles bathed in a Ringer solution in which extracellular Na (Nae) was varied from 150 to 2 mM (Na was replaced with N-methyl-D-glucamine). Baseline [Ca2+]i was similar in afferent arterioles of R and S rats fed low- and high-salt diet. The change in [Ca2+]i (Delta[Ca2+]i) during reduction in Nae from 150 to 2 mM was 80 +/- 10 and 61 +/- 3 nM (not significant) in afferent arterioles from R rats fed the low- and high-salt diet, respectively. In afferent arterioles from S rats on a high-salt diet, Delta[Ca2+]i during reductions in Nae from 150 to 2 mM was attenuated (39 +/- 4 nM) relative to the Delta[Ca2+]i of 79 +/- 13 nM (P < 0.05) obtained in afferent arterioles from S rats on a low-salt diet. In efferent arterioles, baseline [Ca2+]i was similar in R and S rats fed low- and high-salt diets, and Delta[Ca2+]i in response to reduction in Nae was also not different in efferent arterioles from R and S rats fed low- or high-salt diets. Differences in regulation of the exchanger in afferent arterioles of S and R rats were assessed by determining the effects of protein kinase C (PKC) activation by phorbol 12-myristate 13-acetate (PMA, 100 nM) on Delta[Ca2+]i in response to reductions in Nae from 150 to 2 mM. PMA increased Delta[Ca2+]i in afferent arterioles from R rats but not from S rats. These results suggest that Na+/Ca2+ exchange activity is suppressed in afferent arterioles of S rats that are on a high-salt diet. In addition, there appears to be a defect in the PKC-Na+/Ca2+ exchange pathway that might contribute to altered [Ca2+]i regulation in this important renal vascular segment in salt-sensitive hypertension.  (+info)

Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt-induced fibrosis. (55/8610)

This study tests the hypothesis that aldosterone induces cardiac fibrosis through an increase of cardiac angiotensin II (Ang II) AT1 receptor levels, thereby potentiating the fibrotic effect of Ang II by determining the effects of spironolactone and losartan on cardiac fibrosis, AT1 density, and gene expression in aldosterone-salt-treated rats. Fibrosis was quantified by slot blots of collagen I and III mRNA levels and videomorphometry of Sirius red-stained collagen. AT1 receptor density was determined by (125I-Sar1-Ile8)-Ang II competition binding, and AT1 mRNA levels were analyzed by quantitative reverse transcriptase polymerase chain reaction. One month of aldosterone-salt treatment induced a decrease in plasma Ang II and an increase in blood pressure, left ventricular hypertrophy, and ventricular fibrosis. Spironolactone (20 mg/kg per day) and losartan spironolactone (10 mg/kg per day) had no effect on the first 3 parameters. Losartan was as effective as spironolactone in preventing ventricular collagen mRNA increase and fibrosis. Ventricular density of AT1 receptors increased 2-fold and was accompanied by a 3-fold increase in the corresponding mRNA in aldosterone-salt compared with sham-operated rats. Both spironolactone and losartan prevented the elevation of ventricular AT1 density and that of right ventricular AT1 mRNA levels. These results demonstrate that the mechanism by which aldosterone-salt induces cardiac fibrosis involves Ang II acting through AT1 receptors. They also suggest that the cardiac AT1 receptor is a target for aldosterone.  (+info)

Salt-sensitive hypertension develops after short-term exposure to Angiotensin II. (56/8610)

We hypothesized that short-term exposure to angiotensin II (Ang II) could result in structural and functional changes in the kidney that would favor sodium retention and the development of sustained hypertension. To test this hypothesis, rats were exposed to pressor doses (435 ng. kg-1. min-1) of Ang II for 2 weeks. The infusion of Ang II was associated with acute hypertension, renal dysfunction, proteinuria, and focal tubulointerstitial and vascular damage. At sites of the tubulointerstitial damage, there was a reduction in peritubular capillary endothelial cell staining. By use of immunostaining, we found focal loss of endothelial nitric oxide synthase (eNOS) in the peritubular capillaries at sites of injury and a generalized reduction in eNOS in collecting ducts, thin loops of Henle, and vascular bundles in the medulla. When the Ang II infusion ended, the rats became normotensive and renal function returned toward normal. However, exposure of the rats to high salt diet (4% NaCl) resulted in the redevelopment of hypertension after 3 to 4 weeks. Rats maintained on a high salt diet with no prior exposure to Ang II and rats placed on low salt diet (0.1% NaCl) after exposure to Ang II remained normotensive. Thus, we report a new model of salt-sensitive hypertension induced by transient exposure to pressor doses of Ang II. The mechanism may relate to microvascular injury with peritubular capillary loss coupled with functional changes, such as a loss in intrarenal nitric oxide formation, that could alter the ability of the kidney to excrete a salt load.  (+info)