Regulation of Ca2+ homeostasis by atypical Na+ currents in cultured human coronary myocytes. (1/56)

Primary cultured human coronary myocytes (HCMs) derived from ischemic human hearts express an atypical voltage-gated tetrodotoxin (TTX)-sensitive sodium current (I(Na)). The whole-cell patch-clamp technique was used to study the properties of I(Na) in HCMs. The variations of intracellular calcium ([Ca2+]i) and sodium ([Na+]i) were monitored in non-voltage-clamped cells loaded with Fura-2 or benzofuran isophthalate, respectively, using microspectrofluorimetry. The activation and steady-state inactivation properties of I(Na) determined a "window" current between -50 and -10 mV suggestive of a steady-state Na+ influx at the cell resting membrane potential. Consistent with this hypothesis, the resting [Na+]i was decreased by TTX (1 micromol/L). In contrast, it was increased by Na+ channel agonists that also promoted a large rise in [Ca2+]i. Veratridine (10 micromol/L), toxin V from Anemonia sulcata (0.1 micromol/L), and N-bromoacetamide (300 micromol/L) increased [Ca2+]i by 7- to 15-fold. This increase was prevented by prior application of TTX or lidocaine (10 micromol/L) and by the use of Na(+)-free or Ca(2+)-free external solutions. The Ca(2+)-channel antagonist nicardipine (5 micromol/L) blocked the effect of veratridine on [Ca2+]i only partially. The residual component disappeared when external Na+ was replaced by Li+ known to block the Na+/Ca2+ exchanger. The resting [Ca2+]i was decreased by TTX in some cells. In conclusion, I(Na) regulates [Ca2+]i in primary cultured HCMs. This regulation, effective at baseline, involves a tonic control of Ca2+ influx via depolarization-gated Ca2+ channels and, to a lesser extent, via a Na+/Ca2+ exchanger working in the reverse mode.  (+info)

Incorporation of sodium channel blocking and free radical scavenging activities into a single drug, AM-36, results in profound inhibition of neuronal apoptosis. (2/56)

AM-36 is a novel neuroprotective agent incorporating both antioxidant and Na(+) channel blocking actions. In cerebral ischaemia, loss of cellular ion homeostasis due to Na(+) channel activation, together with increased reactive oxygen species (ROS) production, are thought to contribute to neuronal death. Since neuronal death in the penumbra of the ischaemic lesion is suggested to occur by apoptosis, we investigated the ability of AM-36, antioxidants and Na(+) channel antagonists to inhibit toxicity induced by the neurotoxin, veratridine in cultured cerebellar granule cells (CGC's). Veratridine (10 - 300 microM) concentration-dependently reduced cell viability of cultured CGC's. Under the experimental conditions employed, cell death induced by veratridine (100 microM) possessed the characteristics of apoptosis as assessed by morphology, TUNEL staining and DNA laddering on agarose gels. Neurotoxicity and apoptosis induced by veratridine (100 microM) were inhibited to a maximum of 50% by the antioxidants, U74500A (0.1 - 10 microM) and U83836E (0.03 - 10 microM), and to a maximum of 30% by the Na(+) channel blocker, dibucaine (0.1 - 100 microM). In contrast, AM-36 (0.01 - 10 microM) completely inhibited veratridine-induced toxicity ( IC(50) 1.7 (1.5 - 1.9) microM, 95% confidence intervals (CI) in parentheses) and concentration-dependently inhibited apoptosis. These findings suggest veratridine-induced toxicity and apoptosis are partially mediated by generation of ROS. AM-36, which combines both Na(+) channel blocking and antioxidant activity, provided superior neuroprotection compared with agents possessing only one of these actions. This bifunctional profile of activity may underlie the potent neuroprotective effects of AM-36 recently found in a stroke model in conscious rats.  (+info)

Evidence for functional role of epsilonPKC isozyme in the regulation of cardiac Na(+) channels. (3/56)

Investigation of the role of individual protein kinase C (PKC) isozymes in the regulation of Na(+) channels has been largely limited by the lack of isozyme-selective modulators. Here we used a novel peptide-specific activator (epsilonV1-7) of epsilonPKC and other peptide isozyme-specific inhibitors in addition to the general PKC activator phorbol 12-myristate 13-acetate (PMA) to dissect the role of individual PKCs in the regulation of the human cardiac Na(+) channel hH1, heterologously expressed in Xenopus oocytes. Peptides were injected individually or in combination into the oocyte. Whole cell Na(+) current (I(Na)) was recorded using two-electrode voltage clamp. epsilonV1-7 (100 nM) and PMA (100 nM) inhibited I(Na) by 31 +/- 5% and 44 +/- 8% (at -20 mV), respectively. These effects were not seen with the scrambled peptide for epsilonV1-7 (100 nM) or the PMA analog 4alpha-phorbol 12,13-didecanoate (100 nM). However, epsilonV1-7- and PMA-induced I(Na) inhibition was abolished by epsilonV1-2, a peptide-specific antagonist of epsilonPKC. Furthermore, PMA-induced I(Na) inhibition was not altered by 100 nM peptide-specific inhibitors for alpha-, beta-, delta-, or etaPKC. PMA and epsilonV1-7 induced translocation of epsilonPKC from soluble to particulate fraction in Xenopus oocytes. This translocation was antagonized by epsilonV1-2. In native rat ventricular myocytes, PMA and epsilonV1-7 also inhibited I(Na); this inhibition was antagonized by epsilonV1-2. In conclusion, the results provide evidence for selective regulation of cardiac Na(+) channels by epsilonPKC isozyme.  (+info)

ASIC-like, proton-activated currents in rat hippocampal neurons. (4/56)

The expression of mRNA for acid sensing ion channels (ASIC) subunits ASIC1a, ASIC2a and ASIC2b has been reported in hippocampal neurons, but the presence of functional hippocampal ASIC channels was never assessed. We report here the first characterization of ASIC-like currents in rat hippocampal neurons in primary culture. An extracellular pH drop induces a transient Na(+) current followed by a sustained non-selective cation current. This current is highly sensitive to pH with an activation threshold around pH 6.9 and a pH(0.5) of 6.2. About half of the total peak current is inhibited by the spider toxin PcTX1, which is specific for homomeric ASIC1a channels. The remaining PcTX1-resistant ASIC-like current is increased by 300 microM Zn(2+) and, whereas not fully activated at pH 5, it shows a pH(0.5) of 6.0 between pH 7.4 and 5. We have previously shown that Zn(2+) is a co-activator of ASIC2a-containing channels. Thus, the hippocampal transient ASIC-like current appears to be generated by a mixture of homomeric ASIC1a channels and ASIC2a-containing channels, probably heteromeric ASIC1a+2a channels. The sustained non-selective current suggests the involvement of ASIC2b-containing heteromeric channels. Activation of the hippocampal ASIC-like current by a pH drop to 6.9 or 6.6 induces a transient depolarization which itself triggers an initial action potential (AP) followed by a sustained depolarization and trains of APs. Zn(2+) increases the acid sensitivity of ASIC channels, and consequently neuronal excitability. It is probably an important co-activator of ASIC channels in the central nervous system.  (+info)

Three-dimensional solution structure of the sodium channel agonist/antagonist delta-conotoxin TxVIA. (5/56)

The three-dimensional solution structure of delta-conotoxin TxVIA, a 27-mer peptide agonist/antagonist of sodium channels, was determined by two-dimensional (1)H NMR spectroscopy with simulated annealing calculations. A total of 20 converged structures of delta-conotoxin TxVIA were obtained on the basis of 360 distance constraints obtained from nuclear Overhauser effect connectivities, 28 torsion angle constraints, and 27 constraints associated with hydrogen bonds and disulfide bonds. The atomic root mean square difference about the averaged coordinate positions is 0.35 +/- 0.07 A for the backbone atoms (N, C(alpha), C) and 0.98 +/- 0.14 A for all heavy atoms of the entire peptide. The molecular structure of delta-conotoxin TxVIA is composed of a short triple-stranded antiparallel beta-sheet. The overall beta-sheet topology is +2x, -1, which is the same as those for other conotoxins. However, the three-dimensional structure of delta-conotoxin TxVIA has an unusual hydrophobic patch on one side of the molecule, which may play an important role in the sodium channel binding. These results provide a molecular basis for understanding the mechanism of sodium channel modulation through the toxin-channel interaction and insight into the discrimination of different ion channels.  (+info)

Na(+)-K(+)-ATPase activity in alveolar epithelial cells increases with cyclic stretch. (6/56)

Na(+)-K(+)-ATPase pumps (Na(+) pumps) in the alveolar epithelium create a transepithelial Na(+) gradient crucial to keeping fluid from the pulmonary air space. We hypothesized that alveolar epithelial stretch stimulates Na(+) pump trafficking to the basolateral membrane (BLM) and, thereby, increases overall Na(+) pump activity. Alveolar type II cells were isolated from Sprague-Dawley rats and seeded onto elastic membranes coated with fibronectin or 5-day-conditioned extracellular matrix. After 2 days in culture, cells were uniformly stretched for 1 h in a custom-made device. Na(+) pump activity was subsequently assessed by ouabain-inhibitable uptake of (86)Rb(+), a K(+) tracer, and BLM Na(+) pump abundance was measured. In support of our hypothesis, cells increased Na(+) pump activity in a "dose-dependent" manner when stretched to 12, 25, or 37% change in surface area (DeltaSA), and cells stretched to 25% DeltaSA more than doubled Na(+) pump abundance in the BLM. Cells on 5-day matrix tolerated higher strain than cells on fibronectin before the onset of Na(+) pump upregulation. Treatment with Gd(3+), a stretch-activated channel blocker, amiloride, a Na(+) channel blocker, or both reduced but did not abolish stretch-induced effects. Sustained tonic stretch, unlike cyclic stretch, elicited no significant Na(+) pump response.  (+info)

Combined inotropic and bradycardic effects of a sodium channel enhancer in conscious dogs with heart failure: a mechanism for improved myocardial efficiency compared with dobutamine. (7/56)

We compared the cardiac inotropic, chronotropic, and myocardial O(2) consumption (MVO(2)) responses to the sodium (Na(+)) channel enhancer, LY341311 [(S)-4-[3-[[1-(diphenyl-methyl)-3-azetidinyl]oxy]-2-hydroxypropoxy]-1H-indole-2-c arbonitrile monohydrate], with the beta-receptor agonist dobutamine in conscious dogs with heart failure. Heart failure was induced in chronically instrumented dogs by right ventricular pacing at 240 beats per minute for 3 to 4 weeks. LY341311 (10-100 microg/kg/min i.v.) dose dependently increased cardiac contractile function as reflected, at the highest dose, by increases in left ventricular dP/dt(max) (55 +/- 7%), and fractional shortening (62 +/- 9%), accompanied by increases in cardiac stroke work (111 +/- 18%) and minute work (34 +/- 10%) and decreases in heart rate (33 +/- 4%). Dobutamine (2-15 microg/kg/min i.v.) increased contractile responses to a similar degree but also increased heart rate (15 +/- 5%) at the highest dose. Complete ganglionic blockade with hexamethonium and atropine or with hexamethonium alone abolished the bradycardic effect but not the inotropic response to LY341311. At similar levels of inotropic response, dobutamine (10 microg/kg/min) increased MVO(2) by 23 +/- 7% (P < 0.05), whereas LY341311 (100 microg/kg/min) had no effect. In the presence of left atrial pacing at a constant heart rate and at matched contractile work, MVO(2) was increased by LY341311 to the same extent as dobutamine. These data indicate that autonomically mediated bradycardia produced by LY341311 contributes to a favorable net metabolic effect on myocardial O(2) utilization in the failing heart while providing inotropic support comparable to a beta-receptor-mediated agonist.  (+info)

GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. (8/56)

Peripheral pain thresholds are regulated by the actions of inflammatory mediators. Some act through G-protein-coupled receptors on voltage-gated sodium channels. We have found that a low-threshold, persistent tetrodotoxin-resistant Na+ current, attributed to NaV1.9, is upregulated by GTP and its non-hydrolysable analogue GTP-gamma-S, but not by GDP. Inclusion of GTP-gamma-S (500 microM) in the internal solution led to an increase in maximal current amplitude of > 300 % within 5 min. In current clamp, upregulation of persistent current was associated with a more negative threshold for action potential induction (by 15-16 mV) assessed from a holding potential of -90 mV. This was not seen in neurones without the low-threshold current or with internal GDP (P < 0.001). In addition, persistent current upregulation depolarized neurones. At -60 mV, internal GTP-gamma-S led to the generation of spontaneous activity in initially silent neurones only when persistent current was upregulated. These findings suggest that regulation of the persistent current has important consequences for nociceptor excitability.  (+info)