snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. (73/334)

Splicing snRNPs (small nuclear ribonucleoproteins) are essential sub-units of the spliceosome. Here we report the establishment of stable cell lines expressing fluorescently tagged SmB, a core snRNP protein. Analysis of these stable cell lines has allowed us to characterize the nuclear pathway that leads to snRNP accumulation in nuclear speckles and has identified a limiting nucleolar step in the pathway that can be saturated by overexpression of Sm proteins. After nuclear import, newly assembled snRNPs accumulate first in a subset of Cajal bodies that contain both p80-coilin and the survival of motor neurons protein (SMN) and not in bodies that contain p80-coilin but lack SMN. Treatment of cells with leptomycin B (LMB) inhibits both the accumulation of snRNPs in nuclear bodies and their subsequent accumulation in speckles. The formation of Cajal bodies is enhanced by Sm protein expression and the assembly of new snRNPs. Formation of heterokaryons between HeLa cell lines expressing Sm proteins and primary cells that usually lack Cajal bodies results in the detection of Cajal bodies in primary cell nuclei. Transient over-expression of exogenous SmB alone is sufficient to induce correspondingly transient Cajal body formation in primary cells. These data indicate that the level of snRNP protein expression and snRNP assembly, rather than the expression levels of p80-coilin or SMN, may be a key trigger for Cajal body formation.  (+info)

Spinal muscular atrophy genetic testing experience at an academic medical center. (74/334)

Approximately 94% of spinal muscular atrophy (SMA) patients lack both copies of SMN1 exon 7. We report our SMA genetic testing experience (total 1281 cases), using SMA linkage analysis (32 families), SMA diagnostic testing by PCR-RFLP (restriction fragment length polymorphism) to detect the homozygous absence of SMN1 exon 7 (and exon 8) (533 cases), and an assay to determine copy number of SMN1 exon 7 (SMN1 gene dosage analysis) (716 cases). SMN1 gene dosage analysis is used for SMA carrier testing as well as for the confirmation of a heterozygous SMN1 deletion in symptomatic individuals who do not lack both copies of SMN1. We conclude that comprehensive SMA testing, including SMN1 deletion analysis, SMN1 gene dosage analysis, and linkage analysis, offers the most complete evaluation of SMA patients and their families.  (+info)

Sequence-specific interaction of U1 snRNA with the SMN complex. (75/334)

The survival of motor neurons (SMN) protein complex functions in the biogenesis of spliceosomal small nuclear ribonucleoprotein particles (snRNPs) and prob ably other RNPs. All spliceosomal snRNPs have a common core of seven Sm proteins. To mediate the assembly of snRNPs, the SMN complex must be able to bring together Sm proteins with U snRNAs. We showed previously that SMN and other components of the SMN complex interact directly with several Sm proteins. Here, we show that the SMN complex also interacts specifically with U1 snRNA. The stem--loop 1 domain of U1 (SL1) is necessary and sufficient for SMN complex binding in vivo and in vitro. Substitution of three nucleotides in the SL1 loop (SL1A3) abolishes SMN interaction, and the corresponding U1 snRNA (U1A3) is impaired in U1 snRNP biogenesis. Microinjection of excess SL1 but not SL1A3 into Xenopus oocytes inhibits SMN complex binding to U1 snRNA and U1 snRNP assembly. These findings indicate that SMN complex interaction with SL1 is sequence-specific and critical for U1 snRNP biogenesis, further supporting the direct role of the SMN complex in RNP biogenesis.  (+info)

SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2 beta 1. (76/334)

Proximal spinal muscular atrophy (SMA) is caused by the homozygous loss of survival motor neuron (SMN1). SMN2, a nearly identical copy gene, is present in all SMA patients; however this gene cannot provide protection from disease due to the aberrant splicing of a critical exon. SMN1-derived transcripts are exclusively full-length, whereas SMN2-derived transcripts predominantly lack SMN exon 7. A single non-polymorphic nucleotide difference (C in SMN1; T in SMN2) is responsible for the alternative splicing patterns. We have previously shown that transient expression of an SR-like splicing factor, hTra2 beta 1, stimulates inclusion of exon 7 in SMN2-derived mini-gene transcripts through an interaction with the AG-rich exonic splice enhancer within exon 7. We now demonstrate that a second splicing factor, SRp30c, can stimulate SMN exon 7-inclusion and that this activity required the same AG-rich enhancer as hTra2 beta 1. SRp30c did not directly associate with SMN exon 7; rather its association with the exonic enhancer was mediated by a direct interaction with hTra2 beta 1. In the absence of the hTra2 beta 1 binding site, SRp30c failed to complex with SMN exon 7. Taken together, these results identify SRp30c as a modulator of SMN exon 7-inclusion and provide insight into the molecular regulation of this critical exon.  (+info)

Minute virus of mice NS1 interacts with the SMN protein, and they colocalize in novel nuclear bodies induced by parvovirus infection. (77/334)

The human survival motor neuron (SMN) gene is the spinal muscular atrophy-determining gene, and a knockout of the murine Smn gene results in preembryonic lethality. Here we show that SMN can directly interact in vitro and in vivo with the large nonstructural protein NS1 of the autonomous parvovirus minute virus of mice (MVM), a protein essential for viral replication and a potent transcriptional activator. Typically, SMN localizes within nuclear Cajal bodies and diffusely in the cytoplasm. Following transient NS1expression, SMN and NS1 colocalize within Cajal bodies. At early time points following parvovirus infection, NS1 fails to colocalize with SMN within Cajal bodies; however, during the course of MVM infection, dramatic nuclear alterations occur. Formerly distinct nuclear bodies such as Cajal bodies, promyelocytic leukemia gene product (PML) oncogenic domains (PODs), speckles, and autonomous parvovirus-associated replication (APAR) bodies are seen aggregating at later points in infection. These newly formed large nuclear bodies (termed SMN-associated APAR bodies) are active sites of viral replication and viral capsid assembly. These results highlight the transient nature of nuclear bodies and their contents and identify a novel nuclear body formed during infection. Furthermore, simple transient expression of the viral nonstructural proteins is insufficient to induce this nuclear reorganization, suggesting that this event is induced specifically by a step in the viral infection process.  (+info)

Molecular genetics of spinal muscular atrophy: contribution of the NAIP gene to clinical severity. (78/334)

Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders characterized by degeneration of anterior horn cells in the spinal cord, and leads to progressive muscular weakness and atrophy. At least three SMA-related genes have been identified: SMN1, NAIP and p44t. We analyzed these genes in 32 SMA patients and found that the SMN1 gene was deleted in 30 of 32 patients (94 %), irrespective of clinical type. The NAIP gene was deleted in 6 patients and its deletion rate was higher in type I patients than that in type U or V. Further, in type I patients lacking the NAIP gene, deterioration in their respiratory function is more rapid than in those type I patients retaining the NAIP gene. Since complete p44t deletion was observed in only 3 patients, the correlation between the p44t deletion and severity of SMA remained ambiguous. We concluded that the NAIP deletion was closely related to the clinical severity of SMA and was a predictive marker of SMA prognosis, while the SMN1 deletion did not correlate with clinical severity.  (+info)

Identification of a cis-acting element for the regulation of SMN exon 7 splicing. (79/334)

Spinal muscular atrophy results from the loss of functional survival motor neuron (SMN1) alleles. Two nearly identical copies of SMN exist and differ only by a single non-polymorphic C to T transition in exon 7. This transition leads to alteration of exon 7 splicing; that is, SMN1 produces a full-length transcript, whereas SMN2 expresses a low level of full-length transcript and predominantly an isoform lacking exon 7. The truncated transcript of SMN encodes a less stable protein with reduced self-oligomerization activity that fails to compensate for the loss of SMN1. In this paper, we identified a cis-acting element (element 1), which is composed of 45 bp in intron 6 responsible for the regulation of SMN exon 7 splicing. Mutations in element 1 or treatment with antisense oligonucleotides directed toward element 1 caused an increase in exon 7 inclusion. An approximately 33-kDa protein was demonstrated to associate with a pre-mRNA sequence containing both element 1 and the C to T transition in SMN exon 7 but not with the sequence containing mutated element 1, suggesting that the binding of the approximately 33-kDa protein plays crucial roles in the skipping of SMN exon 7 containing the C to T transition.  (+info)

A novel association of the SMN protein with two major non-ribosomal nucleolar proteins and its implication in spinal muscular atrophy. (80/334)

Spinal muscular atrophy (SMA) is caused by the loss of functional survival motor neuron 1 (SMN1) protein. This ubiquitously expressed protein is a component of a novel complex immunodetected in both the cytoplasm and the nucleus, which is associated with complexes involved in mRNA splicing, ribosome biogenesis and transcription. Here, we study a mutant protein corresponding to the N-terminal half of the protein that is encoded by the SMA frameshift mutation SMN 472del5. We show by confocal microscopy that the resulting mutant protein exhibits various distribution patterns in different transiently transfected COS cells. The mutant distributes into the nucleoplasm and/or the nucleolus, whereas the normal SMN protein accumulates at discrete nucleocytoplasmic dot-like structures previously named gems/Cajal bodies. The cell population with the nucleolar distribution is enriched upon treatment with mimosine, a synchronizing drug in late G(1) phase. Co-immunoprecipitation studies carried out on nuclear extracts reveal that both the endogenous SMN and mutant proteins are associated with complexes containing two major non-ribosomal nucleolar proteins, namely nucleolin and protein B23, and that the association is mediated, by among other things, RNA moieties. Both the association of the SMN protein with nucleolin-containing complexes and the nucleolin/B23 complex are disrupted in fibroblasts derived from a type I SMA patient harboring a homozygous SMN1 gene deletion. These findings suggest that altered assembly and/or stability of ribonucleoprotein complexes may contribute to the pathophysiological processes in SMA.  (+info)