Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). (33/334)

The spinal muscular atrophy disease gene product (SMN) is crucial for small nuclear ribonuclear protein (snRNP) biogenesis in the cytoplasm and plays a role in pre-mRNA splicing in the nucleus. SMN oligomers interact avidly with the snRNP core proteins SmB, -D1, and -D3. We have delineated the specific sequences in the Sm proteins that mediate their interaction with SMN. We show that unique carboxyl-terminal arginine- and glycine-rich domains comprising the last 29 amino acids of SmD1 and the last 32 amino acids of SmD3 are necessary and sufficient for SMN binding. Interestingly, SMN also interacts with at least two of the U6-associated Sm-like (Lsm) proteins, Lsm4 and Lsm6. Furthermore, the carboxyl-terminal arginine- and glycine-rich domain of Lsm4 directly interacts with SMN. This suggests that SMN also functions in the assembly of the U6 snRNP in the nucleus and in the assembly of other Lsm-containing complexes. These findings demonstrate that arginine- and glycine-rich domains are necessary and sufficient for SMN interaction, and they expand further the range of targets of the SMN protein.  (+info)

Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). (34/334)

Spinal muscular atrophy (SMA), a common motor neuron disease in humans, results from loss of functional survival motor neuron (SMN1) alleles. A nearly identical copy of the gene, SMN2, fails to provide protection from SMA because of a single translationally silent nucleotide difference in exon 7. This likely disrupts an exonic splicing enhancer and causes exon 7 skipping, leading to abundant production of a shorter isoform, SMN2Delta7. The truncated transcript encodes a less stable protein with reduced self-oligomerization activity that fails to compensate for the loss of SMN1. This report describes the identification of an in vivo regulator of SMN mRNA processing. Htra2-beta1, an SR-like splicing factor and ortholog of Drosophila melanogaster transformer-2, promoted the inclusion of SMN exon 7, which would stimulate full-length SMN2 expression. Htra2-beta1 specifically functioned through and bound an AG-rich exonic splicing enhancer in SMN exon 7. This effect is not species-specific as expression of Htra2-beta1 in human or mouse cells carrying an SMN2 minigene dramatically increased production of full-length SMN2. This demonstrates that SMN2 mRNA processing can be modulated in vivo. Because all SMA patients retain at least one SMN2 copy, these results show that an in vivo modulation of SMN RNA processing could serve as a therapeutic strategy to prevent SMA.  (+info)

Characterization of a nuclear 20S complex containing the survival of motor neurons (SMN) protein and a specific subset of spliceosomal Sm proteins. (35/334)

Spinal muscular atrophy (SMA) is a neurodegenerative disease of motor neurons caused by reduced levels of functional survival of motor neurons (SMN) protein. Cytoplasmic SMN directly interacts with spliceosomal Sm proteins and facilitates their assembly onto U snRNAs. Nuclear SMN, in contrast, mediates recycling of pre-mRNA splicing factors. In this study, we have addressed the function of SMN in the nucleus. We show that a monoclonal antibody directed against SMN inhibits pre-mRNA splicing. Interestingly, the mode of inhibition suggests a novel role for SMN in splicing that occurs prior to, or in addition to, its role in recycling. Using biochemical fractionation and anti-SMN immunoaffinity chromatography, we identified two distinct nuclear SMN complexes termed NSC1 and NSC2. The biochemical properties and protein composition of NSC1 were determined in detail. NSC1 migrates in sucrose gradients as a U snRNA-free 20S complex containing at least 10 proteins. In addition to SMN, these include the SMN-interacting protein 1 (SIP-1), the putative helicase dp103/Gemin3, the novel dp103/Gemin3-interacting protein GIP1/Gemin4 and three additional proteins with apparent masses of 43, 33 and 18 kDa, respectively. Most surprisingly, NSC1 also contains a specific subset of spliceosomal Sm proteins. This shows that the SMN-Sm protein interaction is not restricted to the cytoplasm. Our data imply that nuclear SMN affects splicing by modulating the Sm protein composition of U snRNPs.  (+info)

Animal models of spinal muscular atrophy. (36/334)

Proximal spinal muscular atrophy (SMA) is the second most common autosomal recessive inherited disorder in humans. It is the most common genetic cause of infant mortality. As yet, there is no cure for this neuromuscular disorder which affects the lower motor neurons and proximal muscles of the limbs and trunk. In the last decade, significant advances have been made in understanding this disease, from linkage analysis to isolating the defective gene and identifying its protein product. This review summarizes the most recent advance in SMA research: the development of animal models of the disease, in particular mouse models of SMA. The SMA mice that we describe here present with symptoms similar to those seen in SMA patients. They promise to further the understanding of the molecular basis of this disease and demonstrate the feasibility of using the intact SMN2 gene, found in all SMA patients, as a means of treating this disorder.  (+info)

Survival motor neuron protein modulates neuron-specific apoptosis. (37/334)

Spinal muscular atrophy (SMA) is attributed to mutations in the SMN1 gene, leading to loss of spinal cord motor neurons. The neurotropic Sindbis virus vector system was used to investigate a role for the survival motor neuron (SMN) protein in regulating neuronal apoptosis. Here we show that SMN protects primary neurons and differentiated neuron-like stem cells, but not cultured cell lines from virus-induced apoptotic death. SMN also protects neurons in vivo and increases survival of virus-infected mice. SMN mutants (SMNDelta7 and SMN-Y272C) found in patients with SMA not only lack antiapoptotic activity but also are potently proapoptotic, causing increased neuronal apoptosis and animal mortality. Full-length SMN is proteolytically processed in brains undergoing apoptosis or after ischemic injury. Mutation of an Asp-252 of SMN abolished cleavage of SMN and increased the antiapoptotic function of full-length SMN in neurons. Taken together, deletions or mutations of the C terminus of SMN that result from proteolysis, splicing (SMNDelta7), or germ-line mutations (e.g., Y272C), produce a proapoptotic form of SMN that may contribute to neuronal death in SMA and perhaps other neurodegenerative disorders.  (+info)

The exon 2b region of the spinal muscular atrophy protein, SMN, is involved in self-association and SIP1 binding. (38/334)

Spinal muscular atrophy (SMA) is caused by mutations in the SMN (survival of motor neurons) gene and there is a correlation between disease severity and levels of functional SMN protein. Studies of structure-function relationships in SMN protein may lead to a better understanding of SMA pathogenesis. Self-association of the spinal muscular atrophy protein, SMN, is important for its function in RNA splicing. Biomolecular interaction analysis core analysis now shows that SMN self-association occurs via SMN regions encoded by exons 2b and 6, that exon 2b encodes a binding site for SMN-interacting protein-1 and that interaction occurs between exon 2- and 4-encoded regions within the SMN monomer. The presence of two separate self-association sites suggests a novel mechanism by which linear oligomers or closed rings might be formed from SMN monomers.  (+info)

Disruption of SMN function by ectopic expression of the human SMN gene in Drosophila. (39/334)

Spinal muscular atrophy is a neurodegenerative disorder caused by mutations or deletions in the survival motor neuron (SMN) gene. We have cloned the Drosophila ortholog of SMN (DmSMN) and disrupted its function by ectopically expressing human SMN. This leads to pupal lethality caused by a dominant-negative effect, whereby human SMN may bind endogenous DmSMN resulting in non-functional DmSMN/human SMN hetero-complexes. Ectopic expression of truncated versions of DmSMN and yeast two-hybrid analysis show that the C-terminus of SMN is necessary and sufficient to replicate this effect. We have therefore generated a system which can be utilized to carry out suppressor and high-throughput screens, and provided in vivo evidence for the importance of SMN oligomerization for SMN function at the level of an organism as a whole.  (+info)

A cell system with targeted disruption of the SMN gene: functional conservation of the SMN protein and dependence of Gemin2 on SMN. (40/334)

The motor neuron degenerative disease spinal muscular atrophy is caused by reduced expression of the survival motor neuron (SMN) protein. Here we report a genetic system developed in the chicken pre-B cell line DT40, in which the endogenous SMN gene is disrupted by homologous recombination, and SMN protein is expressed from a chicken SMN cDNA under control of a tetracycline (tet)-repressible promoter. Addition of tet results in depletion of SMN protein and consequent cell death, which directly demonstrates that SMN is required for cell viability. The tet-induced lethality can be rescued by expression of human SMN, indicating that the function of SMN is highly conserved between the two species. Cells expressing low levels of SMN display slow growth proportional to the amount of SMN they contain. Interestingly, the level of the SMN-interacting protein Gemin2 decreases significantly following depletion of SMN, supporting the conclusion that SMN and Gemin2 form a stable complex in vivo. This system provides a powerful setting for studying the function of SMN in vivo and for screening for potential therapeutics for spinal muscular atrophy.  (+info)