Phosphorylation of PML by mitogen-activated protein kinases plays a key role in arsenic trioxide-mediated apoptosis. (49/702)

The promyelocytic leukemia (PML) protein is a potent growth suppressor and proapototic factor, whereas aberrant fusions of PML and retinoic acid receptor (RAR)-alpha are causal agents in human acute promyelocytic leukemia. Arsenic trioxide (As(2)O(3)) treatment induces apoptosis in acute promyelocytic leukemia cells through an incompletely understood mechanism. We report here that As(2)O(3) treatment induces phosphorylation of the PML protein through a mitogen-activated protein (MAP) kinase pathway. Increased PML phosphorylation is associated with increased sumoylation of PML and increased PML-mediated apoptosis. Conversely, MAP kinase cascade inhibitors, or the introduction of phosphorylation or sumoylation-defective mutations of PML, impair As(2)O(3)-mediated apoptosis by PML. We conclude that phosphorylation by MAP kinase cascades potentiates the antiproliferative functions of PML and helps mediate the proapoptotic effects of As(2)O(3).  (+info)

Characterization of human herpesvirus 6 variant B immediate-early 1 protein modifications by small ubiquitin-related modifiers. (50/702)

The human herpesvirus 6 (HHV-6) immediate-early (IE) 1 protein undergoes SUMOylation events during the infectious process. In the present work, we report that Lys-802 (K-802) of IE1 from HHV-6 variant B is the only target residue capable of conjugation to SUMO-1/SMT3C/Sentrin-1, SUMO-2/SMT3A/Sentrin-3 or SUMO-3/SMT3B/Sentrin-2 as determined by transfection and in vitro SUMOylation experiments. PolySUMOylated forms of IE1 were also observed, suggesting that SUMO branching occurs at the K-802 residue. Overexpression of SUMO-1, -2 and -3 led to an overall increase in IE1 levels, irrespective of K-802. The SUMO residues could be efficiently removed by incubating SUMOylated IE1 with SENP1, a recently identified SUMO peptidase. SUMOylation-deficient mutants of IE1 co-localized with nuclear promyelocytic leukaemia protein (PML) oncogenic domains (PODs) as efficiently as WT IE1, indicating that POD targeting is independent of IE1 SUMOylation status. However, in contrast to infection, PODs did not aggregate in IE1B-transfected cells, suggesting that other viral proteins are involved in the process. Transactivation studies indicated that IE1, in combination with IE2, could efficiently transactivate diverse promoters, independent of its SUMOylation status. Overall, the results presented provide a detailed biochemical characterization of post-translational modifications of the HHV-6 IE1 protein by SUMO peptides, contributing to our understanding of the complex interactions between herpesviruses and the SUMO-conjugation pathway.  (+info)

A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. (51/702)

Three SUMO (small ubiquitin-related modifier) genes have been identified in humans, which tag proteins to modulate subcellular localization and/or enhance protein stability and activity. We report the identification of a novel intronless SUMO gene, SUMO-4, that encodes a 95-amino acid protein having an 86% amino acid homology with SUMO-2. In contrast to SUMO-2, which is highly expressed in all of the tissues examined, SUMO-4 mRNA was detected mainly in the kidney. A single nucleotide polymorphism was detected in SUMO-4, substituting a highly conserved methionine with a valine residue (M55V). In HepG2 (liver carcinoma) cells transiently transfected with SUMO-4 expression vectors, Met-55 was associated with the elevated levels of activated heat shock factor transcription factors as compared with Val-55, whereas the levels of NF-kappaB were suppressed to an identical degree. The SUMO-4M (Met) variant is associated with type I diabetes mellitus susceptibility in families (p = 4.0 x 10(-4)), suggesting that it may be involved in the pathogenesis of type I diabetes.  (+info)

Dynamin interacts with members of the sumoylation machinery. (52/702)

Dynamin is a GTP-binding protein whose oligomerization-dependent assembly around the necks of lipid vesicles mediates their scission from parent membranes. Dynamin is thus directly involved in the regulation of endocytosis. Sumoylation is a post-translational protein modification whereby the ubiquitin-like modifier Sumo is covalently attached to lysine residues on target proteins by a process requiring the concerted action of an activating enzyme (ubiquitin-activating enzyme), a conjugating enzyme (ubiquitin carrier protein), and a ligating enzyme (ubiquitin-protein isopeptide ligase). Here, we show that dynamin interacts with Sumo-1, Ubc9, and PIAS-1, all of which are members of the sumoylation machinery. Ubc9 and PIAS-1 are known ubiquitin carrier protein and ubiquitin-protein isopeptide ligase enzymes, respectively, for the process of sumoylation. We have identified the coiled-coil GTPase effector domain (GED) of dynamin as the site on dynamin that interacts with Sumo-1, Ubc9, and PIAS-1. Although we saw no evidence of covalent Sumo-1 attachment to dynamin, Sumo-1 and Ubc9 are shown here to inhibit the lipid-dependent oligomerization of dynamin. Expression of Sumo-1 and Ubc9 in mammalian cells down-regulated the dynamin-mediated endocytosis of transferrin, whereas dynamin-independent fluid-phase uptake was not affected. Furthermore, using high resolution NMR spectroscopy, we have identified amino acid residues on Sumo-1 that directly interact with the GED of dynamin. The results suggest that the GED of dynamin may serve as a scaffold that concentrates the sumoylation machinery in the vicinity of potential acceptor proteins.  (+info)

Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. (53/702)

Covalent modification of many transcription factors with SUMO-1 is emerging as a key role of trans-activational regulation. Here, we demonstrate that peroxisome proliferator-activated receptor (PPAR) gamma, which is a ligand-activated nuclear receptor, is modified by SUMO-1. Sumoylation of PPARgamma mainly occurs at a lysine residue within the activation function 1 domain. Furthermore, we show that the PIAS family proteins, PIAS1 and PIASxbeta, function as E3 ligases (ubiquitin-protein isopeptide ligase) for PPARgamma. PPARgamma interacts directly with PIASxbeta in a ligand-independent manner. Analysis using a PPARgamma mutant with a disrupted sumoylation site shows that modification of PPARgamma by SUMO-1 represses its transcriptional activity. Interestingly, PIASxbeta and Ubc9 enhance the transcriptional activity of PPARgamma independent of PPARgamma sumoylation. Furthermore, PPARgamma ligand-induced apoptosis in a human hepatoblastoma cell line, HepG2, is significantly enhanced by ectopic production of the sumoylation-mutant PPARgamma. These results suggest that the PPARgamma-dependent transactivation pathway seems to be modulated by SUMO-1 modification and may serve as a novel target for apoptosis-induction therapy in cancer cells.  (+info)

NMR structure of the N-terminal domain of SUMO ligase PIAS1 and its interaction with tumor suppressor p53 and A/T-rich DNA oligomers. (54/702)

A member of the PIAS (protein inhibitor of activated STAT) family of proteins, PIAS1, have been reported to serve as an E3-type SUMO ligase for tumor suppressor p53 and its own. It also was proposed that the N-terminal domain of PIAS1 interacts with DNA as well as p53. Extensive biochemical studies have been devoted recently to understand sumoylations and its biological implications, whereas the structural aspects of the PIAS family and the mechanism of its interactions with various factors are less well known to date. In this study, the three-dimensional structure of the N-terminal domain (residues 1-65) of SUMO ligase PIAS1 was determined by NMR spectroscopy. The structure revealed a unique four-helix bundle with a topology of an up-down-extended loop-down-up, a part of which the helix-extended loop-helix represented the SAP (SAF-A/B, Acinus, and PIAS) motif. Thus, this N-terminal domain may be referred to as a four-helix SAP domain. The glutathione S-transferase pull-down assay demonstrated that this domain possesses a binding ability to tumor suppressor p53, a target protein for sumoylation by PIAS1, whereas gel mobility assays showed that it has a strong affinity toward A/T-rich DNA. An NMR analysis of the four-helix SAP domain complexed with the 16-bp-long DNA demonstrated that one end of the four-helix bundle is the binding site and may fit into the minor groove of DNA. The three-dimensional structure and its binding duality are discussed in conjunction with the biological functions of PIAS1 as a SUMO ligase.  (+info)

Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. (55/702)

SUMO, a small ubiquitin-related modifier, is known to covalently attach to a number of nuclear regulatory proteins such as p53, IkappaB, promyelocytic leukemia protein and c-Jun. The sumoylation reaction is catalyzed by the SUMO protease, which exposes the C-terminal active glycine residue of the nascent SUMO, the heterodimeric SUMO activating enzyme, the SUMO conjugating enzyme, Ubc9, and SUMO protein ligases, in a manner similar to ubiquitinylation. Identification of SUMO-regulated proteins is hampered by the fact that many sumoylated proteins are present at a level below normal detection limit. This limitation was overcome by either in vivo overexpression of Myc-SUMO or in vitro sumoylation with excess biotin-SUMO and Ubc9. Sumoylated proteins so obtained were affinity purified or isolated by immunoprecipitation. The isolated sumoylated proteins were identified by sequence analysis using mass spectrometric methods. Results reveal that several heterogeneous nuclear ribonucleoproteins (hnRNPs), zinc finger proteins, and nuclear pore complex proteins were sumoylated. The sumoylation of hnRNP A1, hnRNP F, and hnRNP K were confirmed in vivo by coimmunoprecipitation. In view of the facts that hnRNPs have been implicated in RNA splicing, transport, stability, and translation, our findings suggest that sumoylation could play an important role in regulating mRNA metabolism.  (+info)

A new Saccharomyces cerevisiae strain with a mutant Smt3-deconjugating Ulp1 protein is affected in DNA replication and requires Srs2 and homologous recombination for its viability. (56/702)

The Saccharomyces cerevisiae Srs2 protein is involved in DNA repair and recombination. In order to gain better insight into the roles of Srs2, we performed a screen to identify mutations that are synthetically lethal with an srs2 deletion. One of them is a mutated allele of the ULP1 gene that encodes a protease specifically cleaving Smt3-protein conjugates. This allele, ulp1-I615N, is responsible for an accumulation of Smt3-conjugated proteins. The mutant is unable to grow at 37 degrees C. At permissive temperatures, it still shows severe growth defects together with a strong hyperrecombination phenotype and is impaired in meiosis. Genetic interactions between ulp1 and mutations that affect different repair pathways indicated that the RAD51-dependent homologous recombination mechanism, but not excision resynthesis, translesion synthesis, or nonhomologous end-joining processes, is required for the viability of the mutant. Thus, both Srs2, believed to negatively control homologous recombination, and the process of recombination per se are essential for the viability of the ulp1 mutant. Upon replication, mutant cells accumulate single-stranded DNA interruptions. These structures are believed to generate different recombination intermediates. Some of them are fixed by recombination, and others require Srs2 to be reversed and fixed by an alternate pathway.  (+info)