The Drosophila gene brinker reveals a novel mechanism of Dpp target gene regulation. (1/121)

decapentaplegic (dpp), a Drosophila member of the TGFbeta family of secreted molecules, functions as a long-range morphogen in patterning of the embryo and the adult appendages. Dpp signals via the SMAD proteins Mad and Medea. Here we show that in the absence of brinker (brk), Mad is not required for the activation of Dpp target genes that depend on low levels of Dpp. brk encodes a novel protein with features of a transcriptional repressor. brk itself is negatively regulated by Dpp. Dpp signaling might relieve brk's repression of low-level target genes either by transcriptional repression of brk or by antagonizing a repressor function of brk at the target gene promoters.  (+info)

Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein- and activin-mediated growth arrest and apoptosis in B cells. (2/121)

Smad6 and Smad7 prevent ligand-induced activation of signal-transducing Smad proteins in the transforming growth factor-beta family. Here we demonstrate that both Smad6 and Smad7 are human bone morphogenetic protein-2 (hBMP-2)-inducible antagonists of hBMP-2-induced growth arrest and apoptosis in mouse B cell hybridoma HS-72 cells. Moreover, we confirmed that the ectopic expressions of Smad6 and Smad7 inhibited the hBMP-2-induced Smad1/Smad5 phosphorylation. We previously reported that Smad7 is an activin A-inducible antagonist of activin A-induced growth arrest and apoptosis in HS-72 cells. Interestingly, although mRNA expression of Smad6 was induced by activin A in HS-72 cells, Smad6 showed no antagonistic effect on activin A-induced growth arrest and apoptosis. Moreover, we found that the ectopic expression of Smad7, but not Smad6, inhibited the activin A-induced Smad2 phosphorylation in HS-72 cells. Thus, Smad6 and Smad7 exhibit differential inhibitory effects in bone morphogenetic protein-2- and activin A-mediated signaling in B lineage cells.  (+info)

Increased smad expression and activation are associated with apoptosis in normal and malignant prostate after castration. (3/121)

Transforming growth factor (TGF)-beta1 is induced in the prostate after castration and has been implicated in apoptosis of epithelial cells during involution. TGF-beta1-mediated receptor activation induces phosphorylation of Smad2 and Smad3, which form complexes with Smad4, that translocate to the nucleus to regulate transcription of target genes. Smad6 and Smad7 antagonize the action of signal-transducing Smads. We have examined the immunohistochemical expression of different Smad molecules in the epithelium of rat ventral prostate before and after castration, in androgen-sensitive Dunning R3327 PAP prostatic tumor cells from untreated and castrated rats, and after treatment with estrogen. In the ventral prostate, a significant increase of phosphorylated Smad2 (P-Smad2) was observed after castration. In prostatic tumor cells we observed an increased expression of Smad2 and P-Smad2 after treatment. The levels of Smad3 and, in particular, Smad4 were enhanced in the normal ventral prostate, as well as in the tumors after castration. Interestingly, Smad6 and Smad7 expression was also up-regulated in cells with increased Smad2 activation. The staining for Smad2, P-Smad2, Smad3, Smad4, and Smad7 was nuclear in some cells and was present in areas with a large number of apoptotic cells identified by various morphological criteria, formation of apoptotic bodies and, in adjacent sections, by terminal deoxynucleotidyl transferase-mediated nick end labeling assay. Our results suggest that the signal transduction pathway for TGF-beta, leading to apoptosis, is activated in the normal prostate after castration and in the tumor model after castration, without or with estrogen treatment.  (+info)

Transient gene transfer and expression of Smad7 prevents bleomycin-induced lung fibrosis in mice. (4/121)

TGF-beta plays an important role in lung fibrosis, which is a major cause of suffering and death seen in pulmonary disease. Smad7 has been recently identified as an antagonist of TGF-beta signaling. To investigate whether this novel molecule can be exploited for therapy of lung fibrosis, we determined the effect of exogenous Smad7, introduced by a recombinant human type 5 adenovirus vector, on bleomycin-induced lung fibrosis in mice. C57BL/6 mice with bleomycin-induced lungs received an intratracheal injection of a recombinant adenovirus carrying mice Smad7 cDNA. These mice demonstrated suppression of type I precollagen mRNA, reduced hydroxyproline content, and no morphological fibrotic responses in the lungs when compared with mice administered adenovirus carrying Smad6 cDNA. In addition, we found that expression of Smad7 transgene blocked Smad2 phosphorylation induced by bleomycin in mouse lungs. These data indicated that gene transfer of Smad7 (but not Smad6) prevented bleomycin-induced lung fibrosis, suggesting that Smad7 may have applicability in the treatment of pulmonary fibrosis.  (+info)

Evidence for a role of Smad6 in chick cardiac development. (5/121)

Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGF-beta) superfamily, are obligatory growth factors for early embryogenesis and heart formation. SMAD proteins transduce signals of the TGF-beta superfamily. We isolated chicken Smad6 (cSmad6), a member of inhibitory SMADs, and found its expression to be remarkably restricted to the developing heart, eyes, and limbs. cSmad6 expression was detected in the cardiogenic region of stage 5 embryos and overlapped Nkx2-5 and bmp-2, -4, and -7 expression. Throughout development, cSmad6 was expressed strongly in the heart, primarily in the myocardium, endocardium, and endocardial cushion tissue. Myocardial expression of cSmad6 was stronger in the forming septum, where highly localized expression of bmp-2 and -4 was also observed. Ectopically applied BMP-2 protein induced the expression of cSmad6, a putative negative regulator of BMP-signaling pathway, in anterior medial mesoendoderm of stage 4-5 embryos. In addition, blocking of BMP signaling using Noggin downregulated cSmad6 in cardiogenic tissue. cSmad1, one of the positive mediators of BMP signaling, was also expressed in cardiogenic region, but was not BMP-2 inducible. Our data suggest that cSmad6 has a role in orchestrating BMP-mediated cardiac development. We propose the possible mechanism of action of cSmad6 as modulating BMP signal by keeping a balance between constitutively expressed pathway-specific cSmad1 and ligand-induced inhibitory cSmad6 in the developing heart.  (+info)

Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. (6/121)

The biological effects of type I serine/threonine kinase receptors and Smad proteins were examined using an adenovirus-based vector system. Constitutively active forms of bone morphogenetic protein (BMP) type I receptors (BMPR-IA and BMPR-IB; BMPR-I group) and those of activin receptor-like kinase (ALK)-1 and ALK-2 (ALK-1 group) induced alkaline phosphatase activity in C2C12 cells. Receptor-regulated Smads (R-Smads) that act in the BMP pathways, such as Smad1 and Smad5, also induced the alkaline phosphatase activity in C2C12 cells. BMP-6 dramatically enhanced alkaline phosphatase activity induced by Smad1 or Smad5, probably because of the nuclear translocation of R-Smads triggered by the ligand. Inhibitory Smads, i.e., Smad6 and Smad7, repressed the alkaline phosphatase activity induced by BMP-6 or the type I receptors. Chondrogenic differentiation of ATDC5 cells was induced by the receptors of the BMPR-I group but not by those of the ALK-1 group. However, kinase-inactive forms of the receptors of the ALK-1 and BMPR-I groups blocked chondrogenic differentiation. Although R-Smads failed to induce cartilage nodule formation, inhibitory Smads blocked it. Osteoblast differentiation induced by BMPs is thus mediated mainly via the Smad-signaling pathway, whereas chondrogenic differentiation may be transmitted by Smad-dependent and independent pathways.  (+info)

Smad6 is a Smad1/5-induced smad inhibitor. Characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter. (7/121)

Smad6 is an inhibitory Smad that is induced by bone morphogenetic proteins (BMPs) and interferes with BMP signaling. We have isolated the mouse Smad6 promoter and identified the regions responsible for transcriptional activation by BMPs. The proximal BMP-responsive element (PBE) in the Smad6 promoter is important for the transcriptional activation by BMPs and contains a 28-base pair GC-rich sequence including four overlapping copies of the GCCGnCGC-like motif, which is a binding site for Drosophila Mad and Medea. We generated a luciferase reporter construct (3GC2-Lux) containing three repeats of the GC-rich sequence derived from the PBE. BMPs and BMP receptors induced transcriptional activation of 3GC2-Lux in various cell types, and this activation was enhanced by cotransfection of BMP-responsive Smads, i.e. Smad1 or Smad5. Moreover, direct DNA binding of BMP-responsive Smads and common-partner Smad4 to the GC-rich sequence of PBE was observed. These results indicate that the expression of Smad6 is regulated by the effects of BMP-activated Smad1/5 on the Smad6 promoter.  (+info)

Smad6 as a transcriptional corepressor. (8/121)

Smad6 and Smad7, a subgroup of Smad proteins, antagonize the signals elicited by transforming growth factor-beta. These two Smads, induced by transforming growth factor-beta or bone morphogenetic protein (BMP) stimulation, form stable associations with their activated type I receptors, blocking phosphorylation of receptor-regulated Smads in the cytoplasm. Here we show that Smad6 interacts with homeobox (Hox) c-8 as a transcriptional corepressor, inhibiting BMP signaling in the nucleus. The interaction between Smad6 and Hoxc-8 was identified by a yeast two-hybrid approach and further demonstrated by co-immunoprecipitation assays in cells. Gel shift assays show that Smad6, but not Smad7, interacts with both Hoxc-8 and Hoxa-9 as a heterodimer when binding to DNA. More importantly, the Smad6-Hoxc-8 complex inhibits interaction of Smad1 with Hoxc-8- and Smad1-induced transcription activity. These data indicate that Smad6 interacts with Hox transcription factors as part of the negative feedback circuit in the BMP signaling pathway.  (+info)