CO(2) homeostasis during periodic breathing in obstructive sleep apnea. (9/2181)

The contribution of apnea to chronic hypercapnia in obstructive sleep apnea (OSA) has not been clarified. Using a model (D. M. Rapoport, R. G. Norman, and R. M. Goldring. J. Appl. Physiol. 75: 2302-2309, 1993), we previously illustrated failure of CO(2) homeostasis during periodic breathing resulting from temporal dissociation between ventilation and perfusion ("temporal V/Q mismatch"). This study measures acute kinetics of CO(2) during periodic breathing and addresses interapnea ventilatory compensation for maintenance of CO(2) homeostasis in 11 patients with OSA during daytime sleep (37-171 min). Ventilation and expiratory CO(2) and O(2) fractions were measured on a breath-by-breath basis by means of a tight-fitting full facemask. Calculations included CO(2) excretion, metabolic CO(2) production, and CO(2) balance (metabolic CO(2) production - exhaled CO(2)). CO(2) balance was tabulated for each apnea/hypopnea event-interevent cycle and as a cumulative value during sleep. Cumulative CO(2) balance varied (-3,570 to +1,388 ml). Positive cumulative CO(2) balance occurred in the absence of overall hypoventilation during sleep. For each cycle, positive CO(2) balance occurred despite increased interevent ventilation to rates as high as 45 l/min. This failure of CO(2) homeostasis was dependent on the event-to-interevent duration ratio. The results demonstrate that 1) periodic breathing provides a mechanism for acute hypercapnia in OSA, 2) acute hypercapnia during periodic breathing may occur without a decrease in average minute ventilation, supporting the presence of temporal V/Q mismatch, as predicted from our model, and 3) compensation for CO(2) accumulation during apnea/hypopnea may be limited by the duration of the interevent interval. The relationship of this acute hypercapnia to sustained chronic hypercapnia in OSA remains to be further explored.  (+info)

A simplified method for monitoring respiratory impedance during continuous positive airway pressure. (10/2181)

The forced oscillation technique is useful in detecting changes in upper airway obstruction in patients with sleep apnoea undergoing continuous positive airway pressure (CPAP) ventilation. The aim of this study was to implement and evaluate a method for estimating respiratory impedance (Zrs) from the pressure and flow recorded at the inlet of the CPAP tubing. The method is based on correcting impedance measured at the inlet of the CPAP tubing (Zi) for the effect of the tubing and the exhalation port. The method was evaluated in mechanical analogues and in a healthy subject. Sinusoidal oscillation of 5, 10 and 20 Hz were superimposed on CPAP (5-15 cmH2O). At 5 Hz, the changes in airflow obstruction were substantially underestimated by Zi. Furthermore, Zi exhibited a negative dependence on Zrs at 20 Hz. The assessment of Zrs was greatly improved after correcting Zi for the effects of the CPAP tubing and the exhalation port. Zrs was well estimated at low frequencies, reaching very high values during total occlusion (>60 cmH2O x s x L(-1) at 5-10 Hz). These results indicate that changes in airflow obstruction can be detected using the forced oscillation technique from pressure and flow recorded on the continuous positive airway pressure device. This facilitates the clinical application of the forced oscillation technique for monitoring upper airway patency during sleep.  (+info)

Immediate intraoral adaptation of mandibular advancing appliances of thermoplastic material for the treatment of obstructive sleep apnea. (11/2181)

BACKGROUND: In the treatment of obstructive sleep apnea (OSA), mandibular advancing devices (MAD) are usually individually fabricated on plaster casts of both jaws from polymethyl-methacrylate. The potential disadvantages of these devices are (1) the costs and (2) the time required to construct the device. OBJECTIVE: In this study, the efficacy and feasibility of a cheap MAD consisting of thermoplastic material (SnorBan((R))), which can be directly moulded intraorally, were evaluated. METHODS: In a prospective study, the effect of an MAD consisting of thermoplastic material was investigated in 22 consecutive patients with OSA [respiratory disturbance index (RDI) 32.6 +/- 18.4/h]. Polysomnographic sleep was recorded prior to treatment and after 3 months of treatment with the MAD. RESULTS: Three of the 22 patients who did not tolerate the MAD were excluded from the analysis, whereas 11 patients were classified as responders. In the responder group, the mean RDI decreased from 27.6 +/-7.3 to 7.3 +/- 2.9 (p < 0. 01), correspondingly the sleep quality and the Epworth Sleepiness Scale improved (p < 0.05). Eight patients proved to be non-responders without relevant changes for the measured parameters. CONCLUSIONS: In 50% (11 of 22) of the patients, the MAD improved the OSA to a clinically relevant degree. In contrast to the majority of established MAD, the MAD investigated is cheap and immediately adaptable and thus a feasible strategy to 'screen' the efficacy of this therapeutic principle. Thus the construction of unnecessary MAD is avoided.  (+info)

Hemodynamic effects of periodic obstructive apneas in sedated pigs with congestive heart failure. (12/2181)

Because of similar physiological changes such as increased left ventricular (LV) afterload and sympathetic tone, an exaggerated depression in cardiac output (CO) could be expected in patients with coexisting obstructive sleep apnea and congestive heart failure (CHF). To determine cardiovascular effects and mechanisms of periodic obstructive apnea in the presence of CHF, 11 sedated and chronically instrumented pigs with CHF (rapid pacing) were tested with upper airway occlusion under room air breathing (RA), O(2) breathing (O2), and room air breathing after hexamethonium (Hex). All conditions led to large negative swings in intrathoracic pressure (-30 to -39 Torr) and hypercapnia (PCO(2) approximately 60 Torr), and RA and Hex also caused hypoxia (to approximately 42 Torr). Relative to baseline, RA increased mean arterial pressure (from 97.5 +/- 5.0 to 107.3 +/- 5.7 Torr, P < 0.01), systemic vascular resistance, LV end-diastolic pressure, and LV end-systolic length while it decreased CO (from 2.17 +/- 0.27 to 1.52 +/- 0.31 l/min, P < 0.01), stroke volume (SV; from 23.5 +/- 2.4 to 16.0 +/- 4.0 ml, P < 0.01), and LV end-diastolic length (LVEDL). O2 and Hex decreased mean arterial pressure [from 102.3 +/- 4.1 to 16.0 +/- 4.0 Torr (P < 0.01) with O2 and from 86.0 +/- 8.5 to 78.1 +/- 8.7 Torr (P < 0.05) with Hex] and blunted the reduction in CO [from 2.09 +/- 0.15 to 1.78 +/- 0.18 l/ml for O2 and from 2.91 +/- 0.43 to 2.50 +/- 0.35 l/ml for Hex (both P < 0.05)] and SV. However, the reduction in LVEDL and LV end-diastolic pressure was the same as with RA. There was no change in systemic vascular resistance and LVEDL during O2 and Hex relative to baseline. In the CHF pigs during apnea, there was an exaggerated reduction in CO and SV relative to our previously published data from normal sedated pigs under similar conditions. The primary difference between CHF (present study) and the normal animals is that, in addition to increased LV afterload, there was a decrease in LV preload in CHF contributing to SV depression not seen in normal animals. The decrease in LV preload during apneas in CHF may be related to effects of ventricular interdependence.  (+info)

Effects of arousal and sleep state on systemic and pulmonary hemodynamics in obstructive apnea. (13/2181)

During obstructive sleep apnea (OSA), systemic (Psa) and pulmonary (Ppa) arterial pressures acutely increase after apnea termination, whereas left and right ventricular stroke volumes (SV) reach a nadir. In a canine model (n = 6), we examined the effects of arousal, parasympathetic blockade (atropine 1 mg/kg iv), and sleep state on cardiovascular responses to OSA. In the absence of arousal, SV remained constant after apnea termination, compared with a 4.4 +/- 1.7% decrease after apnea with arousal (P < 0.025). The rise in transmural Ppa was independent of arousal (4.5 +/- 1.0 vs. 4.1 +/- 1.2 mmHg with and without arousal, respectively), whereas Psa increased more after apnea termination in apneas with arousal compared with apneas without arousal. Parasympathetic blockade abolished the arousal-induced increase in Psa, indicating that arousal is associated with a vagal withdrawal of the parasympathetic tone to the heart. Rapid-eye-movement (REM) sleep blunted the increase in Psa (pre- to end-apnea: 5.6 +/- 2.3 mmHg vs. 10.3 +/- 1.6 mmHg, REM vs. non-REM, respectively, P < 0.025), but not transmural Ppa, during an obstructive apnea. We conclude that arousal and sleep state both have differential effects on the systemic and pulmonary circulation in OSA, indicating that, in patients with underlying cardiovascular disease, the hemodynamic consequences of OSA may be different for the right or the left side of the circulation.  (+info)

Neural and local effects of hypoxia on cardiovascular responses to obstructive apnea. (14/2181)

Obstructive sleep apnea (OSA) acutely increases systemic (Psa) and pulmonary (Ppa) arterial pressures and decreases ventricular stroke volume (SV). In this study, we used a canine model of OSA (n = 6) to examine the role of hypoxia and the autonomic nervous system (ANS) in mediating these cardiovascular responses. Hyperoxia (40% oxygen) completely blocked any increase in Ppa in response to obstructive apnea but only attenuated the increase in Psa. In contrast, after blockade of the ANS (20 mg/kg iv hexamethonium), obstructive apnea produced a decrease in Psa (-5.9 mmHg; P < 0.05) but no change in Ppa, and the fall in SV was abolished. Both the fall in Psa and the rise in Ppa that persisted after ANS blockade were abolished when apneas were induced during hyperoxia. We conclude that 1) hypoxia can account for all of the Ppa and the majority of the Psa response to obstructive apnea, 2) the ANS increases Psa but not Ppa in obstructive apnea, 3) the local effects of hypoxia associated with obstructive apnea cause vasodilation in the systemic vasculature and vasoconstriction in the pulmonary vasculature, and 4) a rise in Psa acts as an afterload to the heart and decreases SV over the course of the apnea.  (+info)

Craniomandibular status and function in patients with habitual snoring and obstructive sleep apnoea after nocturnal treatment with a mandibular advancement splint: a 2-year follow-up. (15/2181)

The aim of the investigation was to evaluate the status and function of the temporomandibular joint (TMJ) and masticatory system in patients with habitual snoring and obstructive apnoea after 2 years nocturnal treatment with a mandibular advancement splint. Thirty-two patients participated in the study, ranging from 43.0 to 79.8 years of age (mean 54.4 years, SD 8.78) at the start of treatment. All patients had been referred from the ENT department for treatment with a mandibular advancement splint. The acrylic splint advanced the mandible 50-70 per cent of maximal protrusion, opened 5 mm vertically, and was used 6-8 hours per night and 5-7 nights per week. Overjet, overbite, and molar relationship were measured on dental casts. The patients were asked to answer a questionnaire concerning symptoms of craniomandibular dysfunction (CMD). They were also clinically examined in a standardized manner, including registration of range of mandibular movements, TMJ sounds, pain on movement, and palpatory tenderness of the TMJ and the masticatory muscles. None of the patients showed more than five symptoms of dysfunction either at the start of or after 2 years of treatment. A decrease in the frequency of headache was found for nine of those 18 patients that reported headache (P = 0.004). A minor, but significant decrease in overjet and overbite was found and the molar relationship was also changed. It was concluded that 2 years' treatment with a mandibular advancement splint had no adverse effects on the craniomandibular status and function, but the observed occlusal changes requires further evaluation.  (+info)

Reduced genioglossal activity with upper airway anesthesia in awake patients with OSA. (16/2181)

We examined whether topical upper airway anesthesia leads to a reduction in genioglossal (GG) electromyogram (EMG) in patients with obstructive sleep apnea (OSA). Airway mechanics were also evaluated. In 13 patients with OSA, we monitored GG EMG during tidal breathing and during the application of pulses of negative airway pressure (-10 to -12 cmH(2)O). Airflow resistance and airway collapsibility were determined. All measurements were performed with and without topical anesthesia (lidocaine). Anesthesia led to a significant fall in the peak GG EMG response to negative pressure from 36.1 +/- 4.7 to 24.8 +/- 5.3% (SE) of maximum (P < 0.01). This was associated with a fall in phasic and tonic EMG during tidal breathing (phasic from 24.4 +/- 4.1 to 16.4 +/- 3.4% of maximum and tonic from 10.9 +/- 1.6 to 8.0 +/- 1.3% of maximum, P < 0.01). A significant rise in pharyngeal airflow resistance was also observed. Our results demonstrate that topical receptor mechanisms in the nasopharynx importantly influence dilator muscle activity and are likely important in driving the augmented dilator muscle activity seen in the apnea patient.  (+info)