Long-term regulated expression of growth hormone in mice after intramuscular gene transfer. (41/4814)

Effective delivery of secreted proteins by gene therapy will require a vector that directs stable delivery of a transgene and a regulatory system that permits pharmacologic control over the level and kinetics of therapeutic protein expression. We previously described a regulatory system that enables transcription of a target gene to be controlled by rapamycin, an orally bioavailable drug. Here we demonstrate in vivo regulation of gene expression after intramuscular injection of two separate adenovirus or adeno-associated virus (AAV) vectors, one encoding an inducible human growth hormone (hGH) target gene, and the other a bipartite rapamycin-regulated transcription factor. Upon delivery of either vector system into immunodeficient mice, basal plasma hGH expression was undetectable and was induced to high levels after administration of rapamycin. The precise level and duration of hGH expression could be controlled by the rapamycin dosing regimen. Equivalent profiles of induction were observed after repeated administration of single doses of rapamycin over many months. AAV conferred stable expression of regulated hGH in both immunocompetent and immunodeficient mice, whereas adenovirus-directed hGH expression quickly extinguished in immunocompetent animals. These studies demonstrate that the rapamycin-based regulatory system, delivered intramuscularly by AAV, fulfills many of the conditions necessary for the safe and effective delivery of therapeutic proteins by gene therapy.  (+info)

Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast. (42/4814)

In complex with FKBP12, the immunosuppressant rapamycin binds to and inhibits the yeast TOR1 and TOR2 proteins and the mammalian homologue mTOR/FRAP/RAFT1. The TOR proteins promote cell cycle progression in yeast and human cells by regulating translation and polarization of the actin cytoskeleton. A C-terminal domain of the TOR proteins shares identity with protein and lipid kinases, but only one substrate (PHAS-I), and no regulators of the TOR-signaling cascade have been identified. We report here that yeast TOR1 has an intrinsic protein kinase activity capable of phosphorylating PHAS-1, and this activity is abolished by an active site mutation and inhibited by FKBP12-rapamycin or wortmannin. We find that an intact TOR1 kinase domain is essential for TOR1 functions in yeast. Overexpression of a TOR1 kinase-inactive mutant, or of a central region of the TOR proteins distinct from the FRB and kinase domains, was toxic in yeast, and overexpression of wild-type TOR1 suppressed this toxic effect. Expression of the TOR-toxic domain leads to a G1 cell cycle arrest, consistent with an inhibition of TOR function in translation. Overexpression of the PLC1 gene, which encodes the yeast phospholipase C homologue, suppressed growth inhibition by the TOR-toxic domains. In conclusion, our findings identify a toxic effector domain of the TOR proteins that may interact with substrates or regulators of the TOR kinase cascade and that shares sequence identity with other PIK family members, including ATR, Rad3, Mei-41, and ATM.  (+info)

The zinc finger protein GLI induces cellular sensitivity to the mTOR inhibitor rapamycin. (43/4814)

The protein synthetic machinery is activated by diverse genetic alterations during tumor progression in vivo and represents an attractive target for cancer therapy. We show that rapamycin inhibits the induction of transformed foci in vitro by GLI, a transcription factor that functions in the sonic hedgehog-patched pathway in tumors. In control cells, which were nontransformed epithelioid RK3E cells and derivative c-MYC- or RAS-transformed sister cell lines, rapamycin inhibits mTOR and mTOR-dependent activities but increases global protein synthesis, perhaps by activating a feedback mechanism. In GLI-transformed cells, rapamycin inhibits global protein synthesis and turnover and prevents cellular proliferation. In contrast to its effects on protein synthesis, rapamycin affects bromodeoxyuridine incorporation and cell cycle occupancy of GLI cells and control cells to a similar extent. Rare, variant GLI cells isolated by selection in rapamycin are also drug-resistant for protein metabolism and for cell cycle progression through G1. Our results indicate that sensitivity to rapamycin can be induced by a specific oncogene and that inhibition of global protein metabolism is linked to the rapamycin-sensitive phenotype.  (+info)

Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. (44/4814)

The FRAP-p70s6K signaling pathway was found to be constitutively phosphorylated/active in MiaPaCa-2 and Panc-1 human pancreatic cancer cells and a pancreatic cancer tissue sample as judged by the retarded electrophoretic mobility of the two major FRAP downstream targets, p70s6K and 4E-BP1. Treatment of cells with rapamycin, a selective FRAP Inhibitor, inhibited basal p70s6K kinase activity and induced dephosphorylation of p70s6K and 4E-BP1. Moreover, rapamycin inhibited DNA synthesis as well as anchorage-dependent and -independent proliferation in MiaPaCa-2 and Panc-1 cells. Finally, rapamycin strikingly inhibited cyclin D1 expression in pancreatic cancer cells. Thus, inhibitors of the constitutively active FRAP-p70s6K pathway may provide a novel therapeutic approach for pancreatic cancer.  (+info)

Cell cycle progression and proliferation despite 4BP-1 dephosphorylation. (45/4814)

Proliferation and cell cycle progression in response to growth factors require de novo protein synthesis. It has been proposed that binding of the eukaryotic translation initiation factor 4E (eIF-4E) to the inhibitory protein 4BP-1 blocks translation by preventing access of eIF-4G to the 5' cap of the mRNA. The signal for translation initiation is thought to involve phosphorylation of 4BP-1, which causes it to dissociate from eIF-4E and allows eIF-4G to localize to the 5' cap. It has been suggested that the ability of the macrolide antibiotic rapamycin to inhibit 4BP-1 phosphorylation is responsible for the potent antiproliferative property of this drug. We now show that rapamycin-resistant cells exhibited normal proliferation despite dephosphorylation of 4BP-1 that allows it to bind to eIF-4E. Moreover, despite rapamycin-induced dephosphorylation of 4BP-1, eIF-4E-eIF-4G complexes (eIF-4F) were still detected. In contrast, amino acid withdrawal, which caused a similar degree of 4BP-1 dephosphorylation, resulted in dissociation of the eIF-4E-eIF-4G complex. Thus, 4BP-1 dephosphorylation is not equivalent to eIF-4E inactivation and does not explain the antiproliferative property of rapamycin.  (+info)

Osmotic stress inhibits p70/85 S6 kinase through activation of a protein phosphatase. (46/4814)

While studying the stress regulation of p70/85 S6 kinase (S6K), we observed that anisomycin and UV light stimulated S6K activity, but that sorbitol inactivated S6K. Pretreatment with hyperosmotic stress also prevented the activation of S6K by both 12-O-tetradecanoylphorbol-13-acetate and anisomycin. Comparison of sorbitol and rapamycin revealed that both agents inactivated S6K and caused dephosphorylation of Ser/Thr-Pro sites in the COOH terminus of S6K, including Thr(412), a residue essential to S6K regulation, as determined by phospho-specific antibodies. Rapamycin-resistant S6K truncation mutants were similarly resistant to deactivation by sorbitol. Additionally, the PHAS-1 mobility shift, which is sensitive to rapamycin, was also found to be sensitive to osmotic stress. Experiments using the p38 inhibitor SB203580 and dominant negative mutants involving both stress-activated protein kinase/c-Jun NH(2)-terminal kinase and p38 stress pathways indicated that these pathways are probably not involved in osmotic stress inhibition of S6K. Examining the potential involvement of a phosphatase, we found that sodium pyrophosphate, sodium vanadate, cyclosporin A, tautomycin, and okadaic acid had no effect on osmotic stress inhibition of S6K. However, calyculin A prevented both rapamycin- and sorbitol-mediated deactivation of S6K. Our results suggest that osmotic stress and rapamycin act through a calyculin A-sensitive phosphatase to cause dephosphorylation and deactivation of S6K.  (+info)

Secretion of FK506/FK520 and rapamycin by Streptomyces inhibits the growth of competing Saccharomyces cerevisiae and Cryptococcus neoformans. (47/4814)

FK506 and rapamycin are immunosuppressants that inhibit signalling cascades required for T-cell activation, yet both are natural products of Streptomyces that live in the soil. FK506 and rapamycin also have potent antimicrobial activity against yeast and pathogenic fungi, suggesting a natural role in inhibiting growth of competing micro-organisms. The immunosuppressive and antimicrobial activities of FK506 and rapamycin are mediated by binding to the FKBP12 prolyl isomerase and the resulting FKBP12/FK506 and FKBP12/rapamycin complexes inhibit conserved protein targets, either the phosphatase calcineurin or the TOR (target of rapamycin) kinases, respectively. Streptomyces sp., 'Streptomyces hygroscopicus subsp. ascomyceticus' and Streptomyces hygroscopicus, which produce FK506, FK520 (also known as ascomycin, a C21 ethyl derivative of FK506) and rapamycin, respectively, produced toxins that inhibited the growth of competing cells of the yeast Saccharomyces cerevisiae and the pathogenic fungus Cryptococcus neoformans. Yeast and fungal mutants lacking FKBP12 or expressing dominant drug-resistant calcineurin or TOR mutants were resistant to FK506 and rapamycin, and to the toxins produced by Streptomyces. Streptomyces strains with mutations in the FK506 or rapamycin biosynthetic enzymes were impaired in toxin production. Finally, the toxins secreted by 'S. hygroscopicus subsp. ascomyceticus' and S. hygroscopicus promoted formation of FKBP12/calcineurin and FKBP12/TOR complexes in a two-hybrid assay and mutations that rendered calcineurin or TOR drug-resistant prevented interaction. These observations support the hypothesis that Streptomyces evolved to secrete FK506, FK520 and rapamycin as toxins to inhibit the growth of competing yeast and fungi.  (+info)

Neuronal survival activity of s100betabeta is enhanced by calcineurin inhibitors and requires activation of NF-kappaB. (48/4814)

S100betabeta is a calcium binding, neurotrophic protein produced by nonneuronal cells in the nervous system. The pathway by which it enhances neuronal survival is unknown. Here we show that S100betabeta enhances survival of embryonic chick forebrain neurons in a dose-dependent manner. In the presence of suboptimal amounts of S100betabeta, neuronal survival is enhanced by the immunosuppressants FK506 and cyclosporin A at concentrations that inhibit calcineurin, which is present in these cells. Rapamycin, an immunosuppressant that does not inhibit calcineurin, did not enhance cell survival. Cypermethrin, a direct and highly specific calcineurin inhibitor, mimicked the immunophilin ligands in its neurotrophic effect. None of the drugs stimulated neuronal survival in the absence of S100betabeta. In the presence of suboptimal amounts of S100betabeta, FK506, cyclosporin A, and cypermethrin (but not rapamycin) also increased NF-kappaB activity, as measured by immunofluorescence of cells stained with antibody to the active subunit (p65) and by immunoblotting of nuclear extracts. Antioxidant and glucocorticoid inhibitors of NF-kappaB decreased both the amount of active NF-kappaB and the survival of neurons caused by S100betabeta alone or in the presence of augmenting drugs. We conclude that S100betabeta enhances the survival of chick embryo forebrain neurons through the activation of NF-kappaB.  (+info)