Early symbiotic responses induced by Sinorhizobium meliloti iIvC mutants in alfalfa. (65/773)

A mutation in the ilvC gene of Sinorhizobium meliloti 1021 determines a symbiotically defective phenotype. ilvC mutants obtained from different S. meliloti wild-type strains are able to induce root hair deformation on alfalfa roots and show variable activation of the common nodulation genes nodABC. All of these mutants are noninfective. The presence of extra copies of nodD3-syrM in an IlvC- background does not promote nod expression but allows the detection of low levels of Nod factor production. The sulphation of the Nod factor metabolites, however, is not affected. Furthermore, IlvC- strains induce a specific pattern of starch accumulation on alfalfa roots as well as of early nodulin expression. Hence, the pleiotropic action of the ilvC gene in S. meliloti may reveal novel complexities involved in the symbiotic interaction.  (+info)

Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. (66/773)

Reactive oxygen species are produced as an early event in plant defense response against avirulent pathogens. We show here that alfalfa responds to infection with Sinorhizobium meliloti by production of superoxide and hydrogen peroxide. This similarity in the early response to infection by pathogenic and symbiotic bacteria addresses the question of which mechanism rhizobia use to counteract the plant defense response.  (+info)

In vitro roles of invariant helix-turn-helix motif residue R383 in sigma(54) (sigma(N)). (67/773)

In vitro DNA-binding and transcription properties of sigma(54) proteins with the invariant Arg383 in the putative helix-turn-helix motif of the DNA-binding domain substituted by lysine or alanine are described. We show that R383 contributes to maintaining stable holoenzyme-promoter complexes in which limited DNA opening downstream of the -12 GC element has occurred. Unlike wild-type sigma(54), holoenzymes assembled with the R383A or R383K mutants could not form activator-independent, heparin-stable complexes on heteroduplex Sinorhizobium meliloti nifH DNA mismatched next to the GC. Using longer sequences of heteroduplex DNA, heparin-stable complexes formed with the R383K and, to a lesser extent, R383A mutant holoenzymes, but only when the activator and a hydrolysable nucleotide was added and the DNA was opened to include the -1 site. Although R383 appears inessential for polymerase isomerisation, it makes a significant contribution to maintaining the holoenzyme in a stable complex when melting is initiating next to the GC element. Strikingly, Cys383-tethered FeBABE footprinting of promoter DNA strongly suggests that R383 is not proximal to promoter DNA in the closed complex. This indicates that R383 is not part of the regulatory centre in the sigma(54) holoenzyme, which includes the -12 promoter region elements. R383 contributes to several properties, including core RNA polymerase binding and to the in vivo stability of sigma(54).  (+info)

Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. (68/773)

Eight genes have been identified that function in the regulation, biosynthesis, and transport of rhizobactin 1021, a hydroxamate siderophore produced under iron stress by Sinorhizobium meliloti. The genes were sequenced, and transposon insertion mutants were constructed for phenotypic analysis. Six of the genes, named rhbABCDEF, function in the biosynthesis of the siderophore and were shown to constitute an operon that is repressed under iron-replete conditions. Another gene in the cluster, named rhtA, encodes the outer membrane receptor protein for rhizobactin 1021. It was shown to be regulated by iron and to encode a product having 61% similarity to IutA, the outer membrane receptor for aerobactin. Transcription of both the rhbABCDEF operon and the rhtA gene was found to be positively regulated by the product of the eighth gene in the cluster, named rhrA, which has characteristics of an AraC-type transcriptional activator. The six genes in the rhbABCDEF operon have interesting gene junctions with short base overlaps existing between the genes. Similarities between the protein products of the biosynthesis genes and other proteins suggest that rhizobactin 1021 is synthesized by the formation of a novel siderophore precursor, 1,3-diaminopropane, which is then modified and attached to citrate in steps resembling those of the aerobactin biosynthetic pathway. The cluster of genes is located on the pSyma megaplasmid of S. meliloti 2011. Reverse transcription-PCR with RNA isolated from mature alfalfa nodules yielded no products for rhbF or rhtA at a time when the nifH gene was strongly expressed, indicating that siderophore biosynthesis and transport genes are not strongly expressed when nitrogenase is being formed in root nodules. Mutants having transposon insertions in the biosynthesis or transport genes induced effective nitrogen-fixing nodules on alfalfa plants.  (+info)

glnD and mviN are genes of an essential operon in Sinorhizobium meliloti. (69/773)

To evaluate the role of uridylyl-transferase, the Sinorhizobium meliloti glnD gene was isolated by heterologous complementation in Azotobacter vinelandii. The glnD gene is cotranscribed with a gene homologous to Salmonella mviN. glnD1::Omega or mviN1::Omega mutants could not be isolated by a powerful sucrose counterselection procedure unless a complementing cosmid was provided, indicating that glnD and mviN are members of an indispensable operon in S. meliloti.  (+info)

Sinorhizobium meliloti plasmid pRm1132f replicates by a rolling-circle mechanism. (70/773)

pRm1132f isolated from Sinorhizobium meliloti is a group III rolling-circle-replicating (RCR) plasmid. At least seven of eight open reading frames in the nucleotide sequence represented coding regions. The minimal replicon contained a rep gene and single- and double-stranded origins of replication. Detection of single-stranded plasmid DNA confirmed that pRm1132f replicated via an RCR mechanism.  (+info)

Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. (71/773)

Identifying the types and distributions of organic substrates that support microbial activities around plant roots is essential for a full understanding of plant-microbe interactions and rhizosphere ecology. We have constructed a strain of the soil bacterium Sinorhizobium meliloti containing a gfp gene fused to the melA promoter which is induced on exposure to galactose and galactosides. We used the fusion strain as a biosensor to determine that galactosides are released from the seeds of several different legume species during germination and are also released from roots of alfalfa seedlings growing on artificial medium. Galactoside presence in seed wash and sterile root washes was confirmed by HPLC. Experiments examining microbial growth on alpha-galactosides in seed wash suggested that alpha-galactoside utilization could play an important role in supporting growth of S. meliloti near germinating seeds of alfalfa. When inoculated into microcosms containing legumes or grasses, the biosensor allowed us to visualize the localized presence of galactosides on and around roots in unsterilized soil, as well as the grazing of fluorescent bacteria by protozoa. Galactosides were present in patches around zones of lateral root initiation and around roots hairs, but not around root tips. Such biosensors can reveal intriguing aspects of the environment and the physiology of the free-living soil S. meliloti before and during the establishment of nodulation, and they provide a nondestructive, spatially explicit method for examining rhizosphere soil chemical composition.  (+info)

Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. (72/773)

Medicago truncatula contains a family of at least five genes related to AUX1 of Arabidopsis thaliana (termed MtLAX genes for Medicago truncatula-like AUX1 genes). The high sequence similarity between the encoded proteins and AUX1 implies that the MtLAX genes encode auxin import carriers. The MtLAX genes are expressed in roots and other organs, suggesting that they play pleiotropic roles related to auxin uptake. In primary roots, the MtLAX genes are expressed preferentially in the root tips, particularly in the provascular bundles and root caps. During lateral root and nodule development, the genes are expressed in the primordia, particularly in cells that were probably derived from the pericycle. At slightly later stages, the genes are expressed in the regions of the developing organs where the vasculature arises (central position for lateral roots and peripheral region for nodules). These results are consistent with MtLAX being involved in local auxin transport and suggest that auxin is required at two common stages of lateral root and nodule development: development of the primordia and differentiation of the vasculature.  (+info)