oriT-directed cloning of defined large regions from bacterial genomes: identification of the Sinorhizobium meliloti pExo megaplasmid replicator region. (57/773)

We have developed a procedure to directly clone large fragments from the genome of the soil bacterium Sinorhizobium meliloti. Specific regions to be cloned are first flanked by parallel copies of an origin of transfer (oriT) together with a plasmid replication origin capable of replicating large clones in Escherichia coli but not in the target organism. Supplying transfer genes in trans specifically transfers the oriT-flanked region, and in this process, site-specific recombination at the oriT sites results in a plasmid carrying the flanked region of interest that can replicate in E. coli from the inserted origin of replication (in this case, the F origin carried on a BAC cloning vector). We have used this procedure with the oriT of the plasmid RK2 to clone contiguous fragments of 50, 60, 115, 140, 240, and 200 kb from the S. meliloti pExo megaplasmid. Analysis of the 60-kb fragment allowed us to identify a 9-kb region capable of autonomous replication in the bacterium Agrobacterium tumefaciens. The nucleotide sequence of this fragment revealed a replicator region including homologs of the repA, repB, and repC genes from other Rhizobiaceae, which encode proteins involved in replication and segregation of plasmids in many organisms.  (+info)

Sinorhizobium meliloti associated with Medicago sativa and Melilotus spp. in arid saline soils in Xinjiang, China. (58/773)

Of 42 rhizobial isolates from Medicago sativa and Melilotus spp. growing in arid saline fields in Xinjiang, China, 40 were identified as Sinorhizobium meliloti by a polyphasic approach. However, diverse groups were obtained from these isolates in numerical taxonomy and SDS-PAGE of proteins. They could grow at pH 10.5 and were tolerant to 2.5-4.0% (w/v) NaCl.  (+info)

DNA melting within a binary sigma(54)-promoter DNA complex. (59/773)

The final sigma(54) subunit of the bacterial RNA polymerase requires the action of specialized enhancer-binding activators to initiate transcription. Here we show that final sigma(54) is able to melt promoter DNA when it is bound to a DNA structure representing the initial nucleation of DNA opening found in closed complexes. Melting occurs in response to activator in a nucleotide-hydrolyzing reaction and appears to spread downstream from the nucleation point toward the transcription start site. We show that final sigma(54) contains some weak determinants for DNA melting that are masked by the Region I sequences and some strong ones that require Region I. It seems that final sigma(54) binds to DNA in a self-inhibited state, and one function of the activator is therefore to promote a conformational change in final sigma(54) to reveal its DNA-melting activity. Results with the holoenzyme bound to early melted DNA suggest an ordered series of events in which changes in core to final sigma(54) interactions and final sigma(54)-DNA interactions occur in response to activator to allow final sigma(54) isomerization and the holoenzyme to progress from the closed complex to the open complex.  (+info)

Genetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italian soils. (60/773)

We analyzed the genetic diversity of 531 Sinorhizobium meliloti strains isolated from nodules of Medicago sativa cultivars in two different Italian soils during 4 years of plant growth. The isolates were analyzed for DNA polymorphism with the random amplified polymorphic DNA method. The populations showed a high level of genetic polymorphism distributed throughout all the isolates, with 440 different haplotypes. Analysis of molecular variance allowed us to relate the genetic structure of the symbiotic population to various factors, including soil type, alfalfa cultivar, individual plants within a cultivar, and time. Some of these factors significantly affected the genetic structure of the population, and their relative influence changed with time. At the beginning of the experiment, the soil of origin and, even more, the cultivar significantly influenced the distribution of genetic variability of S. meliloti. After 3 years, the rhizobium population was altered; it showed a genetic structure based mainly on differences among plants, while the effects of soil and cultivar were not significant.  (+info)

RecA-independent ectopic transposition in vivo of a bacterial group II intron. (61/773)

RmInt1 is a group II intron of Sinorhizobium meliloti which was initially found within the insertion sequence ISRm2011-2. Although the RmInt1 intron-encoded protein lacks a recognizable endonuclease domain, it is able to mediate insertion of RmInt1 at an intron-specific location in intronless ISRm2011-2 recipient DNA, a phenomenon termed homing. Here we have characterized three additional insertion sites of RmInt1 in the genome of S.meliloti. Two of these sites are within IS elements closely related to ISRm2011-2, which appear to form a characteristic group within the IS630-Tc1 family. The third site is in the oxi1 gene, which encodes a putative oxide reductase. The newly identified integration sites contain conserved intron-binding site (IBS1 and IBS2) and delta' sequences (14 bp). The RNA of the intron-containing oxi1 gene is able to splice and the oxi1 site is a DNA target for RmInt1 transposition in vivo. Ectopic transposition of RmInt1 into the oxi1 gene occurs at 20-fold lower efficiency than into the homing site (ISRm2011-2) and is independent of the major RecA recombination pathway. The possibility that transposition of RmInt1 to the oxi1 site occurs by reverse splicing into DNA is discussed.  (+info)

Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. (62/773)

The symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti results in the formation of nitrogen-fixing nodules on the roots of the host plant. The early stages of nodule formation are induced by bacteria via lipochitooligosaccharide signals known as Nod factors (NFs). These NFs are structurally specific for bacterium-host pairs and are sufficient to cause a range of early responses involved in the host developmental program. Early events in the signal transduction of NFs are not well defined. We have previously reported that Medicago sativa root hairs exposed to NF display sharp oscillations of cytoplasmic calcium ion concentration (calcium spiking). To assess the possible role of calcium spiking in the nodulation response, we analyzed M. truncatula mutants in five complementation groups. Each of the plant mutants is completely Nod- and is blocked at early stages of the symbiosis. We defined two genes, DMI1 and DMI2, required in common for early steps of infection and nodulation and for calcium spiking. Another mutant, altered in the DMI3 gene, has a similar mutant phenotype to dmi1 and dmi2 mutants but displays normal calcium spiking. The calcium behavior thus implies that the DMI3 gene acts either downstream of calcium spiking or downstream of a common branch point for the calcium response and the later nodulation responses. Two additional mutants, altered in the NSP and HCL genes, which show root hair branching in response to NF, are normal for calcium spiking. This system provides an opportunity to use genetics to study ligand-stimulated calcium spiking as a signal transduction event.  (+info)

A homologue of the tryptophan-rich sensory protein TspO and FixL regulate a novel nutrient deprivation-induced Sinorhizobium meliloti locus. (63/773)

A nutrient deprivation-induced locus in Sinorhizobium meliloti strain 1021 was identified by use of a Tn5-luxAB reporter gene transposon. The tagged locus is comprised of two open reading frames (ORFs) designated ndiA and ndiB for nutrient deprivation-induced genes A and B. Comparison of the deduced amino acid sequences of both ndiA and ndiB to the protein databases failed to reveal similarity to any known genes. The expression of the ndi locus was found to be induced by carbon and nitrogen deprivation, osmotic stress, and oxygen limitation and during entry into stationary phase. To identify regulatory components involved in the control of ndi gene expression, a second round of mutagenesis was performed on the primary ndiB::Tn5-luxAB-tagged strain (C22) with transposon Tn1721. A double-mutant strain was obtained that lacked ndi locus transcriptional activity under all of the inducing conditions tested. The Tn1721-tagged gene showed a high degree of similarity to tryptophan-rich sensory protein TspO from Rhodobacter sphaeroides, as well as to mitochondrial benzodiazepine receptor pK18 from mammals. Induction of the ndi::Tn5-luxAB reporter gene fusion was restored under all inducing conditions by introducing the tspO coding region, from either S. meliloti or R. sphaeroides, in trans. Furthermore, it was found that, in addition to tspO, fixL, which encodes the sensor protein of an oxygen-sensing two-component system, is required for full expression of the ndi locus, but only under low oxygen tension.  (+info)

Genetic characterization of a Sinorhizobium meliloti chromosomal region in lipopolysaccharide biosynthesis. (64/773)

The genetic characterization of a 5.5-kb chromosomal region of Sinorhizobium meliloti 2011 that contains lpsB, a gene required for the normal development of symbiosis with Medicago spp., is presented. The nucleotide sequence of this DNA fragment revealed the presence of six genes: greA and lpsB, transcribed in the forward direction; and lpsE, lpsD, lpsC, and lrp, transcribed in the reverse direction. Except for lpsB, none of the lps genes were relevant for nodulation and nitrogen fixation. Analysis of the transcriptional organization of lpsB showed that greA and lpsB are part of separate transcriptional units, which is in agreement with the finding of a DNA stretch homologous to a "nonnitrogen" promoter consensus sequence between greA and lpsB. The opposite orientation of lpsB with respect to its first downstream coding sequence, lpsE, indicated that the altered LPS and the defective symbiosis of lpsB mutants are both consequences of a primary nonpolar defect in a single gene. Global sequence comparisons revealed that the greA-lpsB and lrp genes of S. meliloti have a genetic organization similar to that of their homologous loci in R. leguminosarum bv. viciae. In particular, high sequence similarity was found between the translation product of lpsB and a core-related biosynthetic mannosyltransferase of R. leguminosarum bv. viciae encoded by the lpcC gene. The functional relationship between these two genes was demonstrated in genetic complementation experiments in which the S. meliloti lpsB gene restored the wild-type LPS phenotype when introduced into lpcC mutants of R. leguminosarum. These results support the view that S. meliloti lpsB also encodes a mannosyltransferase that participates in the biosynthesis of the LPS core. Evidence is provided for the presence of other lpsB-homologous sequences in several members of the family Rhizobiaceae.  (+info)