The effects of particulate metals on cell viability of osteoblast-like cells in vitro. (41/770)

Effects of fifteen particulate objects, fourteen metals and one non-metal on cell viability of osteoblast-like cells were studied in vitro, to determine whether an adverse effect on cells could be induced by the particulate form or soluble ions. The Al, Ti, Zr, Nb, Ta, Cr, Mo, and Fe particulates depressed cell viability at higher particulate concentrations, but their extracts yielded no effect on cells except for Mo. On the other hand, little difference in cell viability between particulates and extracts was observed for Cu, Si, V, W, and Co. However, Mn and Ni yielded more adverse effects on cells in the case of the particulates than the extracts. These findings suggested that the effects of particulates on cells depended upon the direct effects of contact between particulates and cells, the indirect effects of dissolved ions and the kinds of particulate elements.  (+info)

Myosin II contributes to the posterior contraction and the anterior extension during the retraction phase in migrating Dictyostelium cells. (42/770)

Cells must exert force against the substrate to migrate. We examined the vectors (both the direction and the magnitude) of the traction force generated by Dictyostelium cells using an improved non-wrinkling silicone substrate. During migration, the cells showed two 'alternate' phases of locomotory behavior, an extension phase and a retraction phase. In accordance with these phases, two alternate patterns were identified in the traction force. During the extension phase, the cell exerted a 'pulling force' toward the cell body in the anterior and the posterior regions and a 'pushing force' in the side of the cell (pattern 1). During the retraction phase, the cell exerted a 'pushing force' in the anterior region, although the force disappeared in the side and the posterior regions of the cell (pattern 2). Myosin II heavy chain null cells showed a single pattern in their traction force comparable to 'pattern 1', although they still had the alternate biphasic locomotory behavior similar to the wild-type cells. Therefore, the generation of 'pushing force' in the anterior and the cancellation of the traction force in the side and the posterior during the retraction phase were deficient in myosin knock-out mutant cells, suggesting that these activities depend on myosin II via the posterior contraction. Considering all these results, we hypothesized that there is a highly coordinated, biphasic mechanism of cell migration in Dictyostelium.  (+info)

Regulation of oceanic silicon and carbon preservation by temperature control on bacteria. (43/770)

We demonstrated in laboratory experiments that temperature control of marine bacteria action on diatoms strongly influences the coupling of biogenic silica and organic carbon preservation. Low temperature intensified the selective regeneration of organic matter by marine bacteria as the silicon:carbon preservation ratio gradually increased from approximately 1 at 33 degrees C to approximately 6 at -1.8 degrees C. Temperature control of bacteria-mediated selective preservation of silicon versus carbon should help to interpret and model the variable coupling of silicon and carbon sinking fluxes and the spatial patterns of opal accumulation in oceanic systems with different temperature regimes.  (+info)

A rice mutant defective in Si uptake. (44/770)

Rice (Oryza sativa) accumulates silicon (Si) in the tops to levels up to 10.0% of shoot dry weight, but the mechanism responsible for high Si uptake by rice roots is not understood. We isolated a rice mutant (GR1) that is defective in active Si uptake by screening M(2) seeds (64,000) of rice cv Oochikara that were treated with 10(-3) M sodium azide for 6 h at 25 degrees C. There were no phenotypic differences between wild type (WT) and GR1 except that the leaf blade of GR1 remained droopy when Si was supplied. Uptake experiments showed that Si uptake by GR1 was significantly lower than that by WT at both low and high Si concentrations. However, there was no difference in the uptake of other nutrients such as phosphorus and potassium. Si concentration in the xylem sap of WT was 33-fold that of the external solution, but that of GR1 was 3-fold higher than the external solution at 0.15 mM Si. Si uptake by WT was inhibited by metabolic inhibitors including NaCN and 2,4-dinitrophenol and by low temperature, whereas Si uptake by GR1 was not inhibited by these agents. These results suggest that an active transport system for Si uptake is disrupted in GR1. Analysis of F(2) populations between GR1 and WT showed that roots with high Si uptake and roots with low Si uptake segregated at a 3:1 ratio, suggesting that GR1 is a recessive mutant of Si uptake.  (+info)

Retention of carbon and alteration of expected 13C-tracer enrichments by silylated derivatives using continuous-flow combustion-isotope ratio mass spectrometry. (45/770)

Continuous-flow inlets from oxidation reactors are commonly used systems for biological sample introduction into isotope ratio mass spectrometers (IRMS) to measure 13C enrichment above natural abundance. Because the samples must be volatile enough to pass through a gas chromatograph, silylated derivatization reactions are commonly used to modify biological molecules to add the necessary volatility. Addition of a tert-butyldimethylsilyl (TBDMS) group is a common derivatization approach. However, we have found that samples do not produce the expected increment in measured 13C abundance as the TBDMS derivatives. We have made measurements of 13C enrichment of leucine and glutamate standards of known 13C enrichment using derivatives without silicon (N-acetyl n-propyl ester), with silicon (TBDMS), and an intermediate case. The measurements of 13C in amino acids derivatized without silicon were as expected. The 13C enrichment measurements using the TBDMS derivative were higher than expected but could be corrected to produce the expected 13C enrichment measurement by IRMS if one carbon was removed per silicon. We postulate that the silicon in the derivative forms silicon carbide compounds in the heated cupric oxide reactor, rather than forming silicon dioxide. Doing so reduces the amount of CO2 formed from the carbon in the sample. Silylated derivatives retain carbon with the silicon and must be used carefully and with correction factors to measure 13C enrichments by continuous-flow IRMS.  (+info)

In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick. (46/770)

Studies were undertaken to determine further effects of silicon deficiency in the chick. The diet and experimental conditions were the same as those used in previous studies to demonstrate the essentiality of silicon for growth and development. Skeletal and other abnormalities involving glycosaminoglycans in formation of articular cartilage and comb connective tissue were found to be associated with silicon deficiency. The bones of 1 day-old deutectomized cockerels fed a silicon supplemented diet and killed at 4 weeks of age had significantly greater amounts of articular cartilage and water as compared with the silicon deficient group and also a greater proportion of hexosamine in the cartilage. The greater water content in bones of the silicon supplemented chicks coincided with a larger content of glycosaminoglycans in the articular cartilage. A similar relationship was obtained in cockerel comb. In addition to larger amounts of connective tissue and of total hexosamine in combs of the supplemented group, a higher percentage of hexosamine and a higher silicon content was found. These findings provide the first evidence for a requirement for silicon in articular cartilage and connective tissue formation and that the site of action of silicon is in the glycosaminoglycan-protein complexes of the ground substance.  (+info)

Calcified nanostructured silicon wafer surfaces for biosensing: effects of surface modification on bioactivity. (47/770)

The growth of known biologically-relevant mineral phases on semiconducting surfaces is one strategy to explicitly induce bioactivity in such materials, either for sensing or drug delivery applications. In this work, we describe the use of a spark ablation process to fabricate deliberate patterns of Ca(10)(PO4)6(OH)2 on crystalline Si (calcified nanoporous silicon). These patterns have been principally characterized by scanning electron microscopy in conjunction with elemental characterization by energy dispersive x-ray analysis. This is followed by a detailed comparison of the effects of fibroblast adhesion and proliferation onto calcified nanoporous Si, calcified nanoporous Si derivatized with alendronate, as well as control samples of an identical surface area containing porous SiO2. Fibroblast adhesion and proliferation assays demonstrate that a higher density of cells grow on the Ca3(PO4)2/porous Si/SiO2 structures relative to the alendronate-modified surfaces and porous Si/SiO2 samples.  (+info)

Polymer replicas of photonic porous silicon for sensing and drug delivery applications. (48/770)

Elaborate one-dimensional photonic crystals are constructed from a variety of organic and biopolymers, which can be dissolved or melted, by templating the solution-cast or injection-molded materials in porous silicon or porous silicon dioxide multilayer (rugate dielectric mirror) structures. After the removal of the template by chemical dissolution, the polymer castings replicate the photonic features and the nanostructure of the master. We demonstrate that these castings can be used as vapor sensors, as deformable and tunable optical filters, and as self-reporting, bioresorbable materials.  (+info)