Surfactant protein A prevents silica-mediated toxicity to rat alveolar macrophages. (41/2325)

Silicosis is a serious occupational lung disease associated with irreversible pulmonary fibrosis. The interaction between inhaled crystalline silica and the alveolar macrophage (AM) is thought to be a key event in the development of silicosis and fibrosis. Silica can cause direct injury to AMs and can induce AMs to release various inflammatory mediators. Acute silicosis is also characterized by a marked elevation in surfactant apoprotein A (SP-A); however, the role of SP-A in silicosis is unknown. We investigated whether SP-A directly affects the response of AMs to silica. In this study, the degree of silica toxicity to cultured rat AMs as assessed by a (51)Cr cytotoxicity assay was shown to be dependent on the time of exposure and the concentration and size of the silica particles. Silica directly injured rat AMs as evidenced by a cytotoxic index of 32.9 +/- 2.5, whereas the addition of rat SP-A (5 microg/ml) significantly reduced the cytotoxic index to 16.6 +/- 1.2 (P < 0. 001). This effect was reversed when SP-A was incubated with either polyclonal rabbit anti-rat SP-A antibody or D-mannose. These data indicate that SP-A mitigates the effect of silica on AM viability, and this effect may involve the carbohydrate recognition domain of SP-A. The elevation of SP-A in acute silicosis may serve as a normal host response to prevent lung cell injury after exposure to silica.  (+info)

Structure of bioactive glass and its application to glass ionomer cement. (42/2325)

We prepared a new glass ionomer cement using bioactive CaO-P2O5-SiO2(-MgO) glass and investigated its setting process using FT-IR and MAS NMR analyses. The compressive strengths of the cements depended on the glass composition and a maximum strength of 33.3 +/- 4.7 MPa was obtained using cement with the glass composition of MgO:4.6, CaO:44.9, SiO2:34.2 and P2O5:16.3% in weight. FT-IR analysis showed that the COOH group in the polyacrylic acid decreased and carboxylate ion (COO-Ca2+) increased after the setting reaction. A broad signal appeared around -82 ppm in 29Si MAS-NMR spectra of the glass and a new signal corresponding to hydrated silica gel formation appeared around -102 and -111 ppm after setting. This suggests that Ca2+ was released from the glass powder to form carboxylate salt and that a degree of polymerization in the silicate network increased. The setting mechanism of the cement was found to be essentially the same as in conventional glass ionomer cement.  (+info)

Elimination of amino acid interferences in the chiral ligand-exchange chromatographic analysis of lactic acid enantiomers in wine. (43/2325)

Chiral ligand-exchange liquid chromatography is used to identify and quantitate lactic acid enantiomers in wines that have or have not undergone malolactic fermentation. The stationary phase is (R)-penicillamine, which is bound lipophilically to a C18 bonded silica matrix. The mobile phase is 1mM copper sulfate, and the detection mode is ultraviolet. Serious interference from (S)-aspartic acid and other amino acids is eliminated by the use of propanesulfonic acid-type cation exchange solid-phase extraction cartridges prior to chromatographic analysis. Lactic acid enantiomers in wine are quantitated in the range of 10 to 500 mg/L. The detection limit is 3 mg/L. The method is also successful in the determination of lactic acid enantiomers in certain beers (e.g., lambic beers), kim-chi, sauerkraut, and various yogurts.  (+info)

Rheumatoid arthritis in workers exposed to silica in the pottery industry. (44/2325)

OBJECTIVE: To investigate the relation between rheumatoid arthritis and occupational exposure to silica in pottery and related industries. METHODS: Medical records of 8325 men and women born 1916-45 and employed in pottery, refractory material (aluminosilicate or silica), and sandstone industries were examined to identify cases of rheumatoid arthritis. Medical and employment histories were extracted for cases and matched referents. Indices of duration, cumulative exposure, and mean silica concentration were compiled. Conditional logistic regression was used to investigate the relation between rheumatoid arthritis and indices of exposure, having allowed for potential confounders of smoking, employment in the coal mining industry, and number of pregnancies. RESULTS: 58 Cases of rheumatoid arthritis (43 men, 15 women) were identified. Cases had significantly shorter duration of exposure than referents. There was no significant difference between cases and referents in mean silica concentration. Men who had worked in the coal mining industry were particularly at risk (odds ratio 5.36, 95% confidence interval 1.92 to 15.03). CONCLUSION: There was no evidence of increased risk of developing rheumatoid arthritis after occupational exposure to silica at mean exposures within the current United Kingdom exposure limits.  (+info)

Improved NlaIII digestion of PAGE-purified 102 bp ditags by addition of a single purification step in both the SAGE and microSAGE protocols. (45/2325)

Despite the success of microarray technologies, serial analysis of gene expression (SAGE) still remains the only technique that allows an accurate quantitative and qualitative analysis of cell transcription in a variety of physiological and pathological conditions. Nevertheless, the efficiency of SAGE is limited by the numerous gel purification steps required and these increase the possibility of contamination and reduce or inhibit the activity of the enzymes used in the protocol. In order to eliminate this problem, we have modified the original protocol by adding a single purification step before NLA:III digestion of the ditags. This allows us to increase the yield of digested ditags without reducing the amount of DNA or affecting the subsequent concatemerization.  (+info)

Pulmonary chemokine and mutagenic responses in rats after subchronic inhalation of amorphous and crystalline silica. (46/2325)

Chronic inhalation of crystalline silica can produce lung tumors in rats whereas this has not been shown for amorphous silica. At present the mechanisms underlying this rat lung tumor response are unknown, although a significant role for chronic inflammation and cell proliferation has been postulated. To examine the processes that may contribute to the development of rat lung tumors after silica exposure, we characterized the effects of subchronic inhalation of amorphous and crystalline silica in rats. Rats were exposed for 6 h/day, on 5 days/week, for up to 13 weeks to 3 mg/m(3) crystalline or 50 mg/m(3) amorphous silica. The effects on the lung were characterized after 6.5 and 13 weeks of exposure as well as after 3 and 8 months of recovery. Exposure concentrations were selected to induce high pulmonary inflammatory-cell responses by both compounds. Endpoints characterized after silica exposure included mutation in the HPRT gene of isolated alveolar cells in an ex vivo assay, changes in bronchoalveolar lavage fluid markers of cellular and biochemical lung injury and inflammation, expression of mRNA for the chemokine MIP-2, and detection of oxidative DNA damage. Lung burdens of silica were also determined. After 13 weeks of exposure, lavage neutrophils were increased from 0.26% (controls) to 47 and 55% of total lavaged cells for crystalline and amorphous silica, with significantly greater lavage neutrophil numbers after amorphous silica (9.3 x 10(7) PMNs) compared to crystalline silica (6.5 x 10(7) PMNs). Lung burdens were 819 and 882 microg for crystalline and amorphous silica, respectively. BAL fluid levels of LDH as an indicator of cytotoxicity were twice as high for amorphous silica compared to those of crystalline silica, at the end of exposure. All parameters remained increased for crystalline silica and decreased rapidly for amorphous silica in the 8-month recovery period. Increased MIP-2 expression was observed at the end of the exposure period for both amorphous and crystalline silica. After 8 months of recovery, those markers remained elevated in crystalline silica-exposed rats, whereas amorphous silica-exposed rats were not significantly different from controls. A significant increase in HPRT mutation frequency in alveolar epithelial cells was detected immediately after 13 weeks of exposure to crystalline, but not to amorphous silica. A significant increase in TUNEL staining was detected in macrophages and terminal bronchiolar epithelial cells of amorphous silica-exposed rats at the end of the exposure period; however, crystalline silica produced far less staining. The observation that genotoxic effects in alveolar epithelial cells occurred only after crystalline but not amorphous silica exposure, despite a high degree of inflammatory-cell response after subchronic exposure to both types of silica, suggests that in addition to an inflammatory response, particle biopersistence, solubility, and direct or indirect epithelial cell cytotoxicity may be key factors for the induction of either mutagenic events or target cell death.  (+info)

Plasma membrane coating with cationic silica particles and osmotic shock alters the morphology of bovine aortic endothelial cells. (47/2325)

We have used a published method of membrane preparation based on the precoating of the apical membrane of aortic endothelial cells with cationic silica microbeads (with or without polyacrylic acid) in combination with an osmotic shock and mechanical shearing to isolate the apical from the basal plasma membranes of these cells, in vitro. After labeling of the plasma membrane of adherent endothelial cells with a fluorescent derivative of phosphatidylcholine and by using laser confocal fluorescence scanning microscopy, we found that this method of membrane isolation rapidly induced invaginations of the basal plasma membrane to an extent which makes this method unsuitable for further membrane lipid analysis. Morphological analysis of the cells and fluorescence recovery after photobleaching experiments on the plasma membranes were performed at each step of the purification procedure and showed that only hypotonic shock and mechanical shearing of the cells enabled the basal plasma membranes to be purified without significant morphological changes.  (+info)

Pulmonary surfactant proteins A and D are potent endogenous inhibitors of lipid peroxidation and oxidative cellular injury. (48/2325)

The lung is composed of a series of branching conducting airways that terminate in grape-like clusters of delicate gas-exchanging airspaces called pulmonary alveoli. Maintenance of alveolar patency at end expiration requires pulmonary surfactant, a mixture of phospholipids and proteins that coats the epithelial surface and reduces surface tension. The surfactant lining is exposed to the highest ambient oxygen tension of any internal interface and encounters a variety of oxidizing toxicants including ozone and trace metals contained within the 10 kl of air that is respired daily. The pathophysiological consequences of surfactant oxidation in humans and experimental animals include airspace collapse, reduced lung compliance, and impaired gas exchange. We now report that the hydrophilic surfactant proteins A (SP-A) and D (SP-D) directly protect surfactant phospholipids and macrophages from oxidative damage. Both proteins block accumulation of thiobarbituric acid-reactive substances and conjugated dienes during copper-induced oxidation of surfactant lipids or low density lipoprotein particles by a mechanism that does not involve metal chelation or oxidative modification of the proteins. Low density lipoprotein oxidation is instantaneously arrested upon SP-A or SP-D addition, suggesting direct interference with free radical formation or propagation. The antioxidant activity of SP-A maps to the carboxyl-terminal domain of the protein, which, like SP-D, contains a C-type lectin carbohydrate recognition domain. These results indicate that SP-A and SP-D, which are ubiquitous among air breathing organisms, could contribute to the protection of the lung from oxidative stresses due to atmospheric or supplemental oxygen, air pollutants, and lung inflammation.  (+info)