U-Pb ages from the neoproterozoic Doushantuo Formation, China. (65/442)

U-Pb zircon dates from volcanic ash beds within the Doushantuo Formation (China) indicate that its deposition occurred between 635 and 551 million years ago. The base records termination of the global-scale Marinoan glaciation and is coeval with similar dated rocks from Namibia, indicating synchronous deglaciation. Carbon isotopic and sequence-stratigraphic data imply that the spectacular animal fossils of the Doushantuo Formation are for the most part younger than 580 million years old. The uppermost Doushantuo Formation contains a pronounced negative carbonate carbon isotopic excursion, which we interpret as a global event at circa 551 million years ago.  (+info)

The effect of heating on the dissolution of alkaline earth silicate fibers in a simple amino acid solution and water. (66/442)

In order to evaluate the effect of pre-heating on biosolubility and water-resistance of alkaline earth silicate (AES) fibers in MgO-SrO-SiO2 and MgO-CaO-SrO-SiO2 compositions, dissolution experiments of the heat-treated (from 110 degrees C to 1,260 degrees C) AES fibers have been carried out in a glycine solution and in distilled water at 40 degrees C for 50 h. The dissolution experiments show that the heat-treatment around 700 degrees C has made the AES fibers more soluble in the glycine solution. This is due to the phase separation of the AES fibers resulting from the heat-treatment. Probably, alkaline earth-rich glassy phases formed by the phase separation facilitate the dissolution of the heat-treated AES fibers in the glycine solution. The heat-treatment around 700 degrees C is possible to decrease the toxicity of the AES fibers further. Meanwhile, this heat-treatment around 700 degrees C has given little effect on the dissolution of the AES fibers in the distilled water. This indicates that the resistance of the AES fibers to water or humidity remains unaffected by the heat-treatment. The water-resistance is a very useful property for MMVFs. This study suggests that the heat-treatment around 700 degrees C is probably an useful treatment in order to enhance the total performance, biosolubility and water-resistance, of AES fibers.  (+info)

Histomorphological response of dogs' dental pulp capped with white mineral trioxide aggregate. (67/442)

This study was conducted to observe the response of dogs' dental pulp to white mineral trioxide aggregate (MTA) when used as pulp capping material. The pulp of 15 dogs' teeth was experimentally exposed and capped with white MTA. The animals were sacrificed two months later and the specimens were prepared for histomorphological study. The pulp capped with white MTA showed a healing process with complete dentin bridge formation in all samples. In some cases, there was not a tubular dentin shape, but only a structure with an interesting morphological aspect sealing the exposure site. Only 2 specimens exhibited pulp inflammation. In conclusion, the data obtained in this study showed that white MTA has the necessary properties of a pulp capping material.  (+info)

Influence of chemical and mechanical polishing on water sorption and solubility of denture base acrylic resins. (68/442)

Influence of polishing methods on water sorption and solubility of denture base acrylic resins was studied. Eighty samples were divided into groups: Classico (CL), and QC 20 (QC) - hot water bath cured; Acron MC (AC), and Onda Cryl (ON) - microwave cured; and submitted to mechanical polishing (MP) - pumice slurry, chalk powder, soft brush and felt cone in a bench vise; or chemical polishing (CP) - heated monomer fluid in a chemical polisher. The first desiccation process was followed by storage in distilled water at 37 +/- 1 degrees C for 1 h, 1 day, 1, 2, 3 and 4 weeks. Concluding each period, water sorption was measured. After the fourth week, a second desiccation process was done to calculate solubility. Data were submitted to analysis of variance, followed by Tukey test (p+info)

Optimizing imaging protocols for overweight and obese patients: a lutetium orthosilicate PET/CT study. (69/442)

High photon attenuation and scatter in obese patients affect image quality. The purpose of the current study was to optimize lutetium orthosilicate (LSO) PET image acquisition protocols in patients weighing > or =91 kg (200 lb). METHODS: Twenty-five consecutive patients (16 male and 9 female) weighing > or =91 kg (200 lb; range, 91-168 kg [200-370 lb]) were studied with LSO PET/CT. After intravenous injection of 7.77 MBq (0.21 mCi) of 18F-FDG per kilogram of body weight, PET emission scans were acquired for 7 min/bed position. Single-minute frames were extracted from the 7 min/bed position scans to reconstruct 1-7 min/bed position scans for each patient. Three reviewers independently analyzed all 7 reconstructed whole-body images of each patient. A consensus reading followed in cases of disagreement. Thus, 175 whole-body scans (7 per patient) were analyzed for number of hypermetabolic lesions. A region-of-interest approach was used to obtain a quantitative estimate of image quality. RESULTS: Fifty-nine hypermetabolic lesions identified on 7 min/bed position scans served as the reference standard. Interobserver concordance increased from 64% for 1 min/bed position scans to 70% for 3 min/bed position scans and 78% for 4 min/bed position scans. Concordance rates did not change for longer imaging durations. Region-of-interest analysis revealed that image noise decreased from 21% for 1 min/bed position scans to 14%, 13%, and 11% for, respectively, 4, 5, and 7 min/bed position scans. When compared with the reference standard, 14 lesions (24%) were missed on 1 min/bed position scans but only 2 (3%) on 4 min/bed position scans. Five minute/bed position scans were sufficient to detect all lesions identified on the 7 min/bed position scans. CONCLUSION: Lesion detectability and reader concordance peaked for 5 min/bed position scans, with no further diagnostic gain achieved by lengthening the duration of PET emission scanning. Thus, 5 min/bed position scans are sufficient for optimal lesion detection with LSO PET/CT in obese patients.  (+info)

Mineral trioxide aggregate as a pulpotomy agent in primary molars: an in vivo study. (70/442)

The retention of pulpally involved deciduous tooth in a healthy state until the time of normal exfoliation remains to be one of the challenges for Pedodontists. A scientific noise has been generated about several materials some of which have been popular pulpotomy medicaments. Concerns have been raised about the toxicity and potential carcinogenicity of these materials, and alternatives have been proposed to maintain the partial pulp vitality, however to date no material has been accepted as an ideal pulpotomy agent. Mineral trioxide aggregate (MTA) is a biocompatible material which provides a biological seal. MTA has been proposed as a potential medicament for various pulpal procedures like pulp capping with reversible pulpitis, apexification, repair of root perforations, etc. Hence the present study was done to evaluate the efficacy of MTA as a pulpotomy medicament. A clinical and radiographic evaluation was done on children where MTA was used as pulpotomy medicament in primary molars for a period of 6 months and it was found to be a successful material.  (+info)

Metal attraction: an ironclad solution to arsenic contamination? (71/442)

Inorganic arsenic-the more acutely toxic form of this metalloid element-contaminates drinking water supplies around the world. In the United States, the most serious arsenic contamination occurs in the West, Midwest, Southwest, and Northeast; as many as 20 million people-many getting their water from unregulated private wells-may be exposed to excess arsenic in their drinking water. In Bangladesh, it's estimated that as many as 40 million people may be suffering from arsenic poisoning; contaminated drinking water is also a problem in many other countries, including Argentina, China, Chile, Ghana, Hungary, India, and Mexico.  (+info)

Supernova olivine from cometary dust. (72/442)

An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (<0.8 times solar), indicative of formation from a type II supernova. The aggregate contains olivine (forsterite 83) grains <100 nanometers in size, with microstructures that are consistent with minimal thermal alteration. This unusually iron-rich olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.  (+info)