Charge recombination and protein dynamics in bacterial photosynthetic reaction centers entrapped in a sol-gel matrix. (41/455)

Many proteins can be immobilized in silica hydrogel matrices without compromising their function, making this a suitable technique for biosensor applications. Immobilization will in general affect protein structure and dynamics. To study these effects, we have measured the P(+)Q(A)(-) charge recombination kinetics after laser excitation of Q(B)-depleted wild-type photosynthetic reaction centers from Rhodobacter sphaeroides in a tetramethoxysilane (TMOS) sol-gel matrix and, for comparison, also in cryosolvent. The nonexponential electron transfer kinetics observed between 10 and 300 K were analyzed quantitatively using the spin boson model for the intrinsic temperature dependence of the electron transfer and an adiabatic change of the energy gap and electronic coupling caused by protein motions in response to the altered charge distributions. The analysis reveals similarities and differences in the TMOS-matrix and bulk-solvent samples. In both preparations, electron transfer is coupled to the same spectrum of low frequency phonons. As in bulk solvent, charge-solvating protein motions are present in the TMOS matrix. Large-scale conformational changes are arrested in the hydrogel, as evident from the nonexponential kinetics even at room temperature. The altered dynamics is likely responsible for the observed changes in the electronic coupling matrix element.  (+info)

Evaluation of shear bond strength of composite to porcelain according to surface treatment. (42/455)

This study evaluated the shear bond strength of porcelain/composite using 40 metal + porcelain + composite cylindrical specimens divided into 4 groups, according to porcelain surface treatment: 1) no treatment, 2) mechanical retentions performed with diamond burs, 3) etching with phosphoric acid+silane, and 4) etching with hydrofluoric acid+silane. After being stored in distilled water at room temperature for one week, the specimens were submitted to a shear force (load) and the data were analyzed statistically (ANOVA). The means (in Mpa) of the groups were: 4.71 (group 1); 4.81 (group 2); 11.76 (group 3); 11.07 (group 4). There were no statistically significant differences between groups 1 and 2 and between groups 3 and 4.  (+info)

Automated carboxy-terminal sequence analysis of peptides. (43/455)

Proteins and peptides can be sequenced from the carboxy-terminus with isothiocyanate reagents to produce amino acid thiohydantoin derivatives. Previous studies in our laboratory have focused on solution phase conditions for formation of the peptidylthiohydantoins with trimethylsilylisothiocyanate (TMS-ITC) and for hydrolysis of these peptidylthiohydantoins into an amino acid thiohydantoin derivative and a new shortened peptide capable of continued degradation (Bailey, J. M. & Shively, J. E., 1990, Biochemistry 29, 3145-3156). The current study is a continuation of this work and describes the construction of an instrument for automated C-terminal sequencing, the application of the thiocyanate chemistry to peptides covalently coupled to a novel polyethylene solid support (Shenoy, N. R., Bailey, J. M., & Shively, J. E., 1992, Protein Sci. I, 58-67), the use of sodium trimethylsilanolate as a novel reagent for the specific cleavage of the derivatized C-terminal amino acid, and the development of methodology to sequence through the difficult amino acid, aspartate. Automated programs are described for the C-terminal sequencing of peptides covalently attached to carboxylic acid-modified polyethylene. The chemistry involves activation with acetic anhydride, derivatization with TMS-ITC, and cleavage of the derivatized C-terminal amino acid with sodium trimethylsilanolate. The thiohydantoin amino acid is identified by on-line high performance liquid chromatography using a Phenomenex Ultracarb 5 ODS(30) column and a triethylamine/phosphoric acid buffer system containing pentanesulfonic acid. The generality of our automated C-terminal sequencing methodology was examined by sequencing model peptides containing all 20 of the common amino acids. All of the amino acids were found to sequence in high yield (90% or greater) except for asparagine and aspartate, which could be only partially removed, and proline, which was found not be capable of derivatization. In spite of these current limitations, the methodology should be a valuable new tool for the C-terminal sequence analysis of peptides.  (+info)

Study on the reaction mechanism of C-6 lithiation of pyrimidine nucleosides by using lithium hexamethyldisilazide as a base. (44/455)

The reaction mechanism of C-6 lithiation of uridine mediated by lithium hexamethyldisilazide (LiHMDS) has been investigated. LiHMDS alone dose not lithiate at C-6 of uridine. However, in the presence of an appropriate silylating agent, e.g. trimethylsilyl chloride, the reaction of 1 with LiHMDS allowed to lithiate at C-6 and gave the corresponding C-6 silylated product 2. The experimental results shown below revealed that O-4 (N-3) of uracil moiety may be temporarily masked by silylation, which triggers the C-6 lithiation by lowering the pKa of H-6. The reaction could efficiently be applied to the synthesis of 6,5'-C-cyclouridine, a nucleoside analogue fixed in a specific glycosyl torsion angle by a carbon-carbon bridge.  (+info)

Optical properties of paint-on resins for shade modification of crown and bridge resins--light transmittance characteristics--. (45/455)

The purpose of this study was to examine the light transmittance characteristics of the paint-on resins for shade modification. Three shades of paint-on resin, one crown and bridge resin, and human enamel were used. Specimens with four different thicknesses (75-150 microm) were prepared. The light transmittances including its wavelength distribution and diffusion characteristics were measured. The color values and the color differences among thicknesses of specimens were also determined. The light transmittance values of the paint-on resins ranged from 60.3% to 88.3% at 100 microm thickness, which were lower or nearly equal in comparison with the crown and bridge resin and enamel. Although differences in the wavelength distribution of transmittance among materials were found at lower wavelengths, all materials showed similar diffusion characteristics. The thin layer of paint-on resin effectively changed the color of restorative resin. The paint-on resin may be an effective material for the modification of the color appearance matching required.  (+info)

Application of polyaniline/sol-gel derived tetraethylorthosilicate films to an amperometric lactate biosensor. (46/455)

The electrochemical entrapment of polyaniline (PANI) onto sol-gel derived tetraethylorthosilicate (TEOS) films deposited onto indium-tin-oxide (ITO) coated glass has been utilized for immobilization of lactate dehydrogenase (LDH). The performance of these sol-gel/PANI/LDH electrodes has been investigated as a function of the lactate concentration, applied potential, pH of the medium and interferents. The amperometric response of the electrodes under optimum conditions exhibited a linear relationship from 1 mM to 4 mM. An attempt has been made to extend the linearity up to 10 mM for lactate by coating an external layer of polyvinyl chloride (PVC) over the sol-gel/PANI/LDH electrodes with a correlation coefficient of 0.89. These sol-gel/PANI/LDH electrodes have a response time of about 60 s, a shelf life of about 8 weeks at 0-4 degrees C and have implications in a lactate biosensor.  (+info)

Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. (47/455)

The spontaneous assembly of phospholipids at planar interfaces between thermotropic liquid crystals and aqueous phases gives rise to patterned orientations of the liquid crystals that reflect the spatial and temporal organization of the phospholipids. Strong and weak specific-binding events involving proteins at these interfaces drive the reorganization of the phospholipids and trigger orientational transitions in the liquid crystals. Because these interfaces are fluid, processes involving the lateral organization of proteins (such as the formation of protein- and phospholipid-rich domains) are also readily imaged by the orientational response of the liquid crystal, as are stereospecific enzymatic events. These results provide principles for label-free monitoring of aqueous streams for molecular and biomolecular species without the need for complex instrumentation.  (+info)

Micropatterning of proteins and mammalian cells on biomaterials. (48/455)

Controlling the spatial organization of cells is vital in engineering tissues that require precisely defined cellular architectures. For example, functional nerves or blood vessels form only when groups of cells are organized and aligned in very specific geometries. Yet, scaffold designs incorporating spatially defined physical cues such as microscale surface topographies or spatial patterns of extracellular matrix to guide the spatial organization and behavior of cells cultured in vitro remain largely unexplored. Here we demonstrate a new approach for controlling the spatial organization, spreading, and orientation of cells on two micropatterned biomaterials: chitosan and gelatin. Biomaterials with grooves of defined width and depth were fabricated using a two-step soft lithography process. Selective attachment and spreading of cells within the grooves was ensured by covalently modifying the plateau regions with commercially available protein resistant triblock copolymers. Precise spatial control over cell spreading and orientation has been observed when human microvascular endothelial cells are cultured on these patterned biomaterials, suggesting the potential of this technique in creating tissue culture scaffolds with defined chemical and topographical features.  (+info)