Hyperproduction of alpha-hemolysin in a sigB mutant is associated with elevated SarA expression in Staphylococcus aureus. (1/2871)

To evaluate the role of SigB in modulating the expression of virulence determinants in Staphylococcus aureus, we constructed a sigB mutant of RN6390, a prototypic S. aureus strain. The mutation in the sigB gene was confirmed by the absence of the SigB protein in the mutant on an immunoblot as well as the failure of the mutant to activate sigmaB-dependent promoters (e.g., the sarC promoter) of S. aureus. Phenotypic analysis indicated that both alpha-hemolysin level and fibrinogen-binding capacity were up-regulated in the mutant strain compared with the parental strain. The increase in fibrinogen-binding capacity correlated with enhanced expression of clumping factor and coagulase on immunoblots. The effect of the sigB mutation on the enhanced expression of the alpha-hemolysin gene (hla) was primarily transcriptional. Upon complementation with a plasmid containing the sigB gene, hla expression returned to near parental levels in the mutant. Detailed immunoblot analysis as well as a competitive enzyme-linked immunosorbent assay of the cell extract of the sigB mutant with anti-SarA monoclonal antibody 1D1 revealed that the expression of SarA was higher in the mutant than in the parental control. Despite an elevated SarA level, the transcription of RNAII and RNAIII of the agr locus remained unaltered in the sigB mutant. Because of a lack of perturbation in agr, we hypothesize that inactivation of sigB leads to increased expression of SarA which, in turn, modulates target genes via an agr-independent but SarA-dependent pathway.  (+info)

General method of analysis of kinetic equations for multistep reversible mechanisms in the single-exponential regime: application to kinetics of open complex formation between Esigma70 RNA polymerase and lambdaP(R) promoter DNA. (2/2871)

A novel analytical method based on the exact solution of equations of kinetics of unbranched first- and pseudofirst-order mechanisms is developed for application to the process of Esigma70 RNA polymerase (R)-lambdaPR promoter (P) open complex formation, which is described by the minimal three-step mechanism with two kinetically significant intermediates (I1, I2), [equation: see text], where the final product is an open complex RPo. The kinetics of reversible and irreversible association (pseudofirst order, [R] >> [P]) to form long-lived complexes (RPo and I2) and the kinetics of dissociation of long-lived complexes both exhibit single exponential behavior. In this situation, the analytical method provides explicit expressions relating observed rate constants to the microscopic rate constants of mechanism steps without use of rapid equilibrium or steady-state approximations, and thereby provides a basis for interpreting the composite rate constants of association (ka), isomerization (ki), and dissociation (kd) obtained from experiment for this or any other sequential mechanism of any number of steps. In subsequent papers, we apply this formalism to analyze kinetic data obtained in the reversible and irreversible binding regimes of Esigma70 RNA polymerase (R)-lambdaP(R) promoter (P) open complex formation.  (+info)

Transient gene asymmetry during sporulation and establishment of cell specificity in Bacillus subtilis. (3/2871)

Sporulation in Bacillus subtilis is initiated by an asymmetric division generating two cells of different size and fate. During a short interval, the smaller forespore harbors only 30% of the chromosome until the remaining part is translocated across the septum. We demonstrate that moving the gene for sigmaF, the forespore-specific transcription factor, in the trapped region of the chromosome is sufficient to produce spores in the absence of the essential activators SpoIIAA and SpoIIE. We propose that transient genetic asymmetry is the device that releases SpoIIE phosphatase activity in the forespore and establishes cell specificity.  (+info)

The Escherichia coli Ada protein can interact with two distinct determinants in the sigma70 subunit of RNA polymerase according to promoter architecture: identification of the target of Ada activation at the alkA promoter. (4/2871)

The methylated form of the Ada protein (meAda) activates transcription from the Escherichia coli ada, aidB, and alkA promoters with different mechanisms. In this study we identify amino acid substitutions in region 4 of the RNA polymerase subunit sigma70 that affect Ada-activated transcription at alkA. Substitution to alanine of residues K593, K597, and R603 in sigma70 region 4 results in decreased Ada-dependent binding of RNA polymerase to the alkA promoter in vitro and impairs alkA transcription both in vivo and in vitro, suggesting that these residues define a determinant for meAda-sigma70 interaction. In a previous study (P. Landini, J. A. Bown, M. R. Volkert, and S. J. W. Busby, J. Biol. Chem. 273:13307-13312, 1998), we showed that a set of negatively charged amino acids in sigma70 region 4 is involved in meAda-sigma70 interaction at the ada and aidB promoters. However, the alanine substitutions of positively charged residues K593, K597, and R603 do not affect meAda-dependent transcription at ada and aidB. Unlike the sigma70 amino acids involved in the interaction with meAda at the ada and aidB promoters, K593, K597, and R603 are not conserved in sigmaS, an alternative sigma subunit of RNA polymerase mainly expressed during the stationary phase of growth. While meAda is able to promote transcription by the sigmaS form of RNA polymerase (EsigmaS) at ada and aidB, it fails to do so at alkA. We propose that meAda can activate transcription at different promoters by contacting distinct determinants in sigma70 region 4 in a manner dependent on the location of the Ada binding site.  (+info)

An intrinsic DNA curvature found in the cyanobacterium Microcystis aeruginosa K-81 affects the promoter activity of rpoD1 encoding a principal sigma factor. (5/2871)

The rpoD1 gene in the unicellular cyanobacterium Microcystis aeruginosa K-81 encodes a principal sigma factor of RNA polymerase and is transcribed under light and dark conditions to produce multiple monocistronic transcripts. In the 5'-upstream region from rpoD1 Promoter 2, which has a sequence of Escherichia coli type, we found a sequence-directed DNA curvature with an AT-rich sequence. Insertions of 2 to 21 base pairs introduced into the curved center changed a gross geometry of the original curved DNA structure. The rpoD1 promoter activities assayed in vivo by using transcriptional lacZ fusions were correlated with the change in the gross geometry in not only a cyanobacterium but also E. coli. In addition, RNA polymerase binding to the rpoD1 promoter region and the efficiency of the mRNA synthesis from the rpoD1 Promoter 2 were also affected in vitro by the change in the geometry. These results suggest that the tertiary structure of the curved DNA is important for the rpoD1 transcription. The deletion of the center region of the curvature resulted in a considerable reduction of the transcription from Promoter 2 in the cyanobacterium. This report demonstrates that a curved DNA plays a significant role in transcription in cyanobacteria, and that this functional curvature is located in the 5'-upstream region from the rpoD gene, which encodes a principal sigma factor in eubacteria.  (+info)

Bacillus subtilis spore coat. (6/2871)

In response to starvation, bacilli and clostridia undergo a specialized program of development that results in the production of a highly resistant dormant cell type known as the spore. A proteinacious shell, called the coat, encases the spore and plays a major role in spore survival. The coat is composed of over 25 polypeptide species, organized into several morphologically distinct layers. The mechanisms that guide coat assembly have been largely unknown until recently. We now know that proper formation of the coat relies on the genetic program that guides the synthesis of spore components during development as well as on morphogenetic proteins dedicated to coat assembly. Over 20 structural and morphogenetic genes have been cloned. In this review, we consider the contributions of the known coat and morphogenetic proteins to coat function and assembly. We present a model that describes how morphogenetic proteins direct coat assembly to the specific subcellular site of the nascent spore surface and how they establish the coat layers. We also discuss the importance of posttranslational processing of coat proteins in coat morphogenesis. Finally, we review some of the major outstanding questions in the field.  (+info)

Role of the alternative sigma factor sigmaS in expression of the AlkS regulator of the Pseudomonas oleovorans alkane degradation pathway. (7/2871)

The AlkS protein activates transcription from the PalkB promoter, allowing the expression of a number of genes required for the assimilation of alkanes in Pseudomonas oleovorans. We have identified the promoter from which the alkS gene is transcribed, PalkS, and analyzed its expression under different conditions and genetic backgrounds. Transcription from PalkS was very low during the exponential phase of growth and increased considerably when cells reached the stationary phase. The PalkS -10 region was similar to the consensus described for promoters recognized by Escherichia coli RNA polymerase bound to the alternative sigma factor sigmaS, which directs the expression of many stationary-phase genes. Reporter strains containing PalkS-lacZ transcriptional fusions showed that PalkS promoter is very weakly expressed in a Pseudomonas putida strain bearing an inactivated allele of the gene coding for sigmaS, rpoS. When PalkS was transferred to E. coli, transcription started at the same site and expression was higher in stationary phase only if sigmaS-RNA polymerase was present. The low levels of AlkS protein generated in the absence of sigmaS were enough to support a partial induction of the PalkB promoter. The -10 and -35 regions of PalkS promoter also show some similarity to the consensus recognized by sigmaD-RNA polymerase, the primary form of RNA polymerase. We propose that in exponential phase PalkS is probably recognized both by sigmaD-RNA polymerase (inefficiently) and by sigmaS-RNA polymerase (present at low levels), leading to low-level expression of the alkS gene. sigmaS-RNA polymerase would be responsible for the high level of activity of PalkS observed in stationary phase.  (+info)

Characterization of the ssnA gene, which is involved in the decline of cell viability at the beginning of stationary phase in Escherichia coli. (8/2871)

When grown in rich medium, Escherichia coli exhibits a drastic reduction of the number of viable cells at the beginning of stationary phase. The decline of cell viability was retarded by disruption of the ssnA gene, which was identified as a gene subject to RpoS-dependent negative regulation. Moreover, ssnA expression was induced at the time of decline of cell viability at early stationary phase. The viability decline was augmented in the rpoS background, and this augmentation was suppressed by ssnA mutation. Cloning of the ssnA gene in a multicopy plasmid, pBR322, caused small colony formation and slow growth in liquid medium. Cells harboring the ssnA clone showed aberrant morphology that included enlarged and filamentous shapes. The gene product was identified as a 44-kDa soluble protein, but its function could not be deduced by homology searching. From these results, we conclude that ssnA is expressed in response to a phase-specific signal(s) and that its expression level is controlled by RpoS, by a mechanism which may contribute to determination of cell number in the stationary phase.  (+info)