Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron(III). (57/930)

Graminaceous plant species acquire soil iron by the release of phytosiderophores and subsequent uptake of iron(III)-phytosiderophore complexes. As plant species differ in their ability for phytosiderophore hydroxylation prior to release, an electrophoretic method was set up to determine whether hydroxylation affects the net charge of iron(III)-phytosiderophore complexes, and thus chelate stability. At pH 7.0, non-hydroxylated (deoxymugineic acid) and hydroxylated (mugineic acid; epi-hydroxymugineic acid) phytosiderophores form single negatively charged iron(III) complexes, in contrast to iron(III)-nicotianamine. As the degree of phytosiderophore hydroxylation increases, the corresponding iron(III) complex was found to be less readily protonated. Measured pKa values of the amino groups and calculated free iron(III) concentrations in presence of a 10-fold chelator excess were also found to decrease with increasing degree of hydroxylation, confirming that phytosiderophore hydroxylation protects against acid-induced protonation of the iron(III)-phytosiderophore complex. These effects are almost certainly associated with intramolecular hydrogen bonding between the hydroxyl and amino functions. We conclude that introduction of hydroxyl groups into the phytosiderophore skeleton increases iron(III)-chelate stability in acid environments such as those found in the rhizosphere or the root apoplasm and may contribute to an enhanced iron acquisition.  (+info)

Identification of a siderophore receptor required for ferric ornibactin uptake in Burkholderia cepacia. (58/930)

Ornibactins are linear hydroxamate siderophores produced by Burkholderia cepacia with peptide structures similar to that of pyoverdines produced by the fluorescent pseudomonads. The gene encoding the outer membrane receptor (orbA) was identified, sequenced, and demonstrated to have significant homology with hydroxamate receptors produced by other organisms. The orbA precursor was predicted to be a protein with a molecular mass of 81 kDa. An orbA mutant was constructed and demonstrated to be unable to take up (59)Fe-ornibactins or to grow in medium supplemented with ornibactins. Outer membrane protein profiles from the parent strain, K56-2, revealed an iron-regulated outer membrane protein of 78 kDa that was not detectable in the K56orbA::tp mutant. When this mutant harbored a plasmid containing the orbA gene, the 78-kDa protein was present in the outer membrane protein profiles and the mutant was able to utilize ornibactin to acquire iron. The orbA mutant was less virulent in a chronic respiratory infection model than the parent strain, indicating that ornibactin uptake and utilization are important in the pathogenesis of B. cepacia respiratory infections.  (+info)

Acyl-CoA hydrolysis by the high molecular weight protein 1 subunit of yersiniabactin synthetase: mutational evidence for a cascade of four acyl-enzyme intermediates during hydrolytic editing. (59/930)

Yersiniabactin (Ybt) synthetase is a three-subunit, 17-domain [7 domains in high molecular weight protein (HMWP)2, 9 in HMWP1, and 1 in YbtE] enzyme producing the virulence-conferring siderophore yersiniabactin in Yersinia pestis. The 350-kDa HMWP1 subunit contains a polyketide synthase module (KS-AT-MT(2)-KR-ACP) and a nonribosomal peptide synthetase module (Cy(3)-MT(3)-PCP(3)-TE). The full-length HMWP1 was heterologously overexpressed in Escherichia coli and purified to near homogeneity. The purified HMWP1 showed thioesterase activity toward acyl-CoAs, such as acetyl-CoA, benzoyl-CoA, and malonyl-CoA, with saturation kinetics and relative catalytic efficiencies of 172:50:1. A chain-releasing thioesterase (TE) activity is ascribed to the C-terminal TE domain, and this was substantiated by the fact that acyl-N-acetylcysteamines were hydrolyzed by the didomain PCP(3)-TE fragment of HMWP1. However, PCP(3)-TE failed to hydrolyze any of the acyl-CoAs, suggesting the TE domain does not recognize CoA moiety, thus the acyl-CoA hydrolysis by HMWP1 must involve other domains. Ser-to-Ala mutants in each of the AT, ACP, PCP(3), and TE domains reduced hydrolysis rates of the two fastest substrates, acetyl-CoA and benzoyl-CoA, by more than two orders of magnitude. Thus, the acyl-CoA hydrolysis activity requires 4 of the 9 domains of HMWP1, and it is consistent with autoacylation of the AT domain active site serine and subsequent passage of the itinerant acyl chain from AT to ACP to PCP(3) to the TE domain, a cascade of four sequential acyl-enzyme intermediates, for hydrolytic turnover. This could represent an editing pathway for this polyketide synthase/nonribosomal peptide synthetase assembly line.  (+info)

The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. (60/930)

Bacillus subtilis was reported to produce the catecholic siderophore itoic acid (2,3-dihydroxybenzoate (DHB)-glycine) in response to iron deprivation. However, by inspecting the DNA sequences of the genes dhbE, dhbB, and dhbF as annotated by the B. subtilis genome project to encode the synthetase complex for the siderophore assembly, various sequence errors within the dhbF gene were predicted and confirmed by re-sequencing. According to the corrected sequence, dhbF encodes a dimodular instead of a monomodular nonribosomal peptide synthetase. We have heterologously expressed, purified, and assayed the substrate selectivity of the recombinant proteins DhbB, DhbE, and DhbF. DhbE, a stand-alone adenylation domain of 59.9 kDa, activates, in an ATP-dependent reaction, DHB, which is subsequently transferred to the free thiol group of the cofactor phosphopantetheine of the bifunctional isochorismate lyase/aryl carrier protein DhbB. The third synthetase, DhbF, is a dimodular nonribosomal peptide synthetase of 264 kDa that specifically adenylates threonine and, to a lesser extent, glycine and that covalently loads both amino acids onto their corresponding peptidyl carrier domains. To functionally link the dhb gene cluster to siderophore synthesis, we have disrupted the dhbF gene. Comparative mass spectrometric analysis of culture extracts from both the wild type and the dhbF mutant led to the identification of a mass peak at m/z 881 ([M-H](1-)) that corresponds to a cyclic trimeric ester of DHB-glycine-threonine.  (+info)

The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. (61/930)

Saccharomyces cerevisiae takes up siderophore-bound iron through two distinct systems, one that requires siderophore transporters of the ARN family and one that requires the high affinity ferrous iron transporter on the plasma membrane. Uptake through the plasma membrane ferrous iron transporter requires that the iron first must dissociate from the siderophore and undergo reduction to the ferrous form. FRE1 and FRE2 encode cell surface metalloreductases that are required for reduction and uptake of free ferric iron. The yeast genome contains five additional FRE1 and FRE2 homologues, four of which are regulated by iron and the major iron-dependent transcription factor, Aft1p, but whose function remains unknown. Fre3p was required for the reduction and uptake of ferrioxamine B-iron and for growth on ferrioxamine B, ferrichrome, triacetylfusarinine C, and rhodotorulic acid in the absence of Fre1p and Fre2p. By indirect immunofluorescence, Fre3p was expressed on the plasma membrane in a pattern similar to that of Fet3p, a component of the high affinity ferrous transporter. Enterobactin, a catecholate siderophore, was not a substrate for Fre3p, and reductive uptake required either Fre1p or Fre2p. Fre4p could facilitate utilization of rhodotorulic acid-iron when the siderophore was present in higher concentrations. We propose that Fre3p and Fre4p are siderophore-iron reductases and that the apparent redundancy of the FRE genes confers the capacity to utilize iron from a variety of siderophore sources.  (+info)

In Staphylococcus aureus, fur is an interactive regulator with PerR, contributes to virulence, and Is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. (62/930)

The Staphylococcus aureus genome encodes three ferric uptake repressor (Fur) homologues: Fur, PerR, and Zur. To determine the exact role of Fur in S. aureus, we inactivated the fur gene by allelic replacement using a tetracycline resistance cassette, creating strain MJH010 (fur). The mutant had a growth defect in rich medium, and this defect was exacerbated in metal-depleted CL medium. This growth defect was partially suppressed by manganous ion, a metal ion with known antioxidant properties. This suggests that the fur mutation leads to an oxidative stress condition. Indeed, MJH010 (fur) has reduced levels of catalase activity resulting from decreased katA transcription. Using a katA-lacZ fusion we have determined that Fur functions, either directly or indirectly, as an iron-dependent positive regulator of katA expression. Transcription of katA is coregulated by Fur and PerR, since in MJH010 (fur) transcription was still repressed by manganese while transcription in MJH201 (fur perR) was unresponsive to the presence of iron or manganese. Siderophore biosynthesis was repressed by iron in 8325-4 (wild-type) but in MJH010 (fur) was constitutive. A number of putative Fur-regulated genes were identified in the incomplete genome databases using known S. aureus Fur box sequences. Of those tested, the sstABCD and sirABC operons and the fhuD2 and orf4 genes were found to have Fur-regulated expression. MJH010 (fur) was attenuated (P<0.04) in a murine skin abscess model of infection, as was double-mutant MJH201 (fur perR) (P<0.03). This demonstrates the importance in vivo of iron homeostasis and oxidative stress resistance regulation in S. aureus.  (+info)

Transcriptional activation of Bordetella alcaligin siderophore genes requires the AlcR regulator with alcaligin as inducer. (63/930)

Genetic and biochemical studies have established that Fur and iron mediate repression of Bordetella alcaligin siderophore system (alc) genes under iron-replete nutritional growth conditions. In this study, transcriptional analyses using Bordetella chromosomal alc-lacZ operon fusions determined that maximal alc gene transcriptional activity under iron starvation stress conditions is dependent on the presence of alcaligin siderophore. Mutational analysis and genetic complementation confirmed that alcaligin-responsive transcriptional activation of Bordetella alcaligin system genes is dependent on AlcR, a Fur-regulated AraC-like positive transcriptional regulator encoded within the alcaligin gene cluster. AlcR-mediated transcriptional activation is remarkably sensitive to inducer, occurring at extremely low alcaligin concentrations. This positive autogenous control circuit involving alcaligin siderophore as the inducer for AlcR-mediated transcriptional activation of alcaligin siderophore biosynthesis and transport genes coordinates environmental and intracellular signals for maximal expression of these genes under conditions in which the presence of alcaligin in the environment is perceived.  (+info)

Purification, priming, and catalytic acylation of carrier protein domains in the polyketide synthase and nonribosomal peptidyl synthetase modules of the HMWP1 subunit of yersiniabactin synthetase. (64/930)

The 207-kDa polyketide synthase (PKS) module (residues 1-1895) and the 143-kDa nonribosomal peptidyl synthetase (NRPS) module (1896-3163) of the 350-kDa HMWP1 subunit of yersiniabactin synthetase have been expressed in and purified from Escherichia coli in soluble forms to characterize the acyl carrier protein (ACP) domain of the PKS module and the homologous peptidyl carrier protein (PCP(3)) domain of the NRPS module. The apo-ACP and PCP domains could be selectively posttranslationally primed by the E. coli ACPS and EntD phosphopantetheinyl transferases (PPTases), respectively, whereas the Bacillus subtilis PPTase Sfp primed both carrier protein domains in vitro or during in vivo coexpression. The holo-NRPS module but not the holo-PKS module was then selectively aminoacylated with cysteine by the adenylation domain embedded in the HMWP2 subunit of yersiniabactin synthetase, acting in trans. When the acyltransferase (AT) domain of HMWP1 was analyzed for its ability to malonylate the holo carrier protein domains, in cis acylation was first detected. Then, in trans malonylation of the excised holo-ACP or holo-PCP(3)-TE fragments by HMWP1 showed both were malonylated with a 3:1 catalytic efficiency ratio, showing a promiscuity to the AT domain.  (+info)