Effect of shellfish calcium on the apparent absorption of calcium and bone metabolism in ovariectomized rats. (1/415)

Fossil shellfish powder (FS) and Ezo giant scallop shell powder (EG) were rendered soluble with lactate and citrate under decompression (FSEx and EGEx, respectively) and we examined the effects of lactate-citrate solubilization of FS and EG on mineral absorption, tissue mineral contents, serum biochemical indices and bone mineral density (BMD) in ovariectomized (OVX) rats. The apparent absorption ratios of minerals tended to be high in the rats fed with the solubilized mineral sources, those in the FSEx group being significantly higher than in the FS group. There was no significant difference in the tibia mineral content among the OVX groups. BMD at the distal femoral diaphysis was significantly increased by FSEx and EGEx feeding. It is suggested that solubilization with lactate and citrate under decompression increased the solubility and bioavailability of calcium from such natural sources of shellfish calcium as FS and EG.  (+info)

Removal of cadmium from scallop hepatopancreas by microbial processes. (2/415)

A microbial process for removing cadmium from a homogenate of hepatopancreas, a waste of scallop processing, was devised to use this waste for value-added protein resources. Microorganisms were screened on the basis of the ability to remove cadmium from a medium with the initial concentration of 10 mg/l of cadmium. One soil isolate, identified as Xanthomonas sp. UR No. 2 by its taxonomical characteristics, removed 98% of the cadmium in the medium in 2 d. During cultivation of this strain in the homogenates of hepatopancreas digested by endopeptidases, 90% of cadmium was removed, while this strain had little effect on the simple non-digested homogenates. The mass balance of cadmium during homogenizations of the hepatopancreas tissues and cultivations in the protease-treated homogenate were examined. The content of crude proteins of culture supernatant treated by Xanthomonas sp. UR No. 2 was equivalent to those of various feedstuffs on the market.  (+info)

A method to detect low levels of enteric viruses in contaminated oysters. (3/415)

Direct isolation and identification of pathogenic viruses from oysters implicated in gastroenteritis outbreaks are hampered by inefficient methods for recovering viruses, naturally occurring PCR inhibitors, and low levels of virus contamination. In this study we focused on developing rapid and efficient oyster-processing procedures that can be used for sensitive PCR detection of viruses in raw oysters. Poliovirus type 3 (PV3) Sabin strain was used to evaluate the efficacy of virus recovery and the removal of PCR inhibitors during oyster-processing procedures. These procedures included elution, polyethylene glycol precipitation, solvent extraction, and RNA extraction. Acid adsorption-elution in which glycine buffer (pH 7.5) was used was found to retain fewer inhibitors than direct elution in which glycine buffer (pH 9.5) was used. RNA extraction in which a silica gel membrane was used was more effective than single-step RNA precipitation for removing additional nonspecific PCR inhibitors. The final 10-microl volume of RNA concentrates obtained from 2 g of oyster tissue (concentration factor, 200-fold) was satisfactory for efficient reverse transcription-PCR detection of virus. The overall detection sensitivity of our method was 1 PFU/g of oyster tissue initially seeded with PV3. The method was utilized to investigate a 1998 gastroenteritis outbreak in California in which contaminated oysters were the suspected disease transmission vehicle. A genogroup II Norwalk-like virus was found in two of three recalled oyster samples linked by tags to the harvest dates and areas associated with the majority of cases. The method described here improves the response to outbreaks and can be used for rapid and sensitive detection of viral agents in outbreak-implicated oysters.  (+info)

Diversity of infectious pancreatic necrosis virus strains isolated from fish, shellfish, and other reservoirs in Northwestern Spain. (4/415)

A comparison was done of 231 strains of birnavirus isolated from fish, shellfish, and other reservoirs in a survey study that began in 1986 in Galicia (northwestern Spain). Reference strains from all of the infectious pancreatic necrosis virus serotypes were included in the comparison, which was done by neutralization tests and agarose and polyacrylamide gel electrophoresis of the viral genome. The neutralization tests with antisera against the West Buxton, Spajarup (Sp), and Abild (Ab) strains showed that most of the Galician isolates were European types Sp and Ab; however, many isolates (30%) could not be typed. Results from agarose gels did not provided information for grouping of the strains, since all were found to have genomic segments of similar sizes. Analysis of polyacrylamide gels, however, allowed six electropherogroups (EGs) to be differentiated on the basis of genome mobility and separation among segments, and a certain relationship between EGs and serotypes was observed. A wide diversity of electropherotypes was observed among the Galician isolates, and as neutralization tests showed, most of the isolates were included in EGs corresponding to European types Ab and Sp. Only 6.5% of the isolates had the electropherotype characteristic of American strains.  (+info)

Marine algal toxins: origins, health effects, and their increased occurrence. (5/415)

Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence.  (+info)

Hepatitis A in New South Wales, Australia from consumption of oysters: the first reported outbreak. (6/415)

Between 22 January and 4 April 1997, 467 hepatitis A cases were reported to the New South Wales Health Department, Australia. To identify the cause of the outbreak, we conducted a matched case-control study, and an environmental investigation. Among 66 cases and 66 postcode-matched controls, there was a strong association between illness and consumption of oysters (adjusted odds ratio 42; 95 % confidence interval 5-379). More than two-thirds of cases reported eating oysters, including one third of cases and no controls who reported eating oysters in the Wallis Lake area. A public warning was issued on 14 February, and Wallis Lake oysters were withdrawn from sale. Hepatitis A virus was subsequently identified in oyster samples taken from the lake. Hepatitis A virus poses a special risk to consumers who eat raw oysters because it can survive for long periods in estuaries and cause severe disease.  (+info)

Evaluation of F-specific RNA bacteriophage as a candidate human enteric virus indicator for bivalve molluscan shellfish. (7/415)

Escherichia coli is a widely utilized indicator of the sanitary quality of bivalve molluscan shellfish sold for human consumption. However, it is now well documented that shellfish that meet the E. coli standards for human consumption may contain human enteric viruses that cause gastroenteritis and hepatitis. In this study we investigated using F-specific RNA bacteriophage (FRNA bacteriophage) to indicate the likely presence of such viruses in shellfish sold for consumption. FRNA bacteriophage and E. coli levels were determined over a 2-year period for oysters (Crassostrea gigas) harvested from four commercial sites chosen to represent various degrees of sewage pollution. Three sites were classified as category B sites under the relevant European Community (EC) Directive (91/492), which required purification (depuration) of oysters from these sites before sale. One site was classified as a category A site, and oysters from this site could be sold directly without further processing. Samples were tested at the point of sale following commercial processing and packaging. All of the shellfish complied with the mandatory EC E. coli standard (less than 230 per 100 g of shellfish flesh), and the levels of contamination for more than 90% of the shellfish were at or below the level of sensitivity of the assay (20 E. coli MPN per 100 g), which indicated good quality based on this criterion. In contrast, FRNA bacteriophage were frequently detected at levels that exceeded 1,000 PFU per 100 g. High levels of FRNA bacteriophage contamination were strongly associated with harvest area fecal pollution and with shellfish-associated disease outbreaks. Interestingly, FRNA bacteriophage contamination exhibited a marked seasonal trend that was consistent with the trend of oyster-associated gastroenteritis in the United Kingdom. The correlation between FRNA bacteriophage contamination and health risk was investigated further by using a reverse transcription-PCR assay for Norwalk-like virus (NLV). NLV contamination of oysters was detected only at the most polluted site and also exhibited a seasonal trend that was consistent with the trend of FRNA bacteriophage contamination and with the incidence of disease. The results of this study suggest that FRNA bacteriophage could be used as viral indicators for market-ready oysters.  (+info)

Selective accumulation may account for shellfish-associated viral illness. (8/415)

From 1991 through 1998, 1,266 cases of shellfish-related illnesses were attributed to Norwalk-like viruses. Seventy-eight percent of these illnesses occurred following consumption of oysters harvested from the Gulf Coast during the months of November through January. This study investigated the ability of eastern oysters (Crassostrea virginica) to accumulate indicator microorganisms (i.e., fecal coliforms, Escherichia coli, Clostridium perfringens, and F(+) coliphage) from estuarine water. One-week trials over a 1-year period were used to determine if these indicator organisms could provide insight into the seasonal occurrence of these gastrointestinal illnesses. The results demonstrate that oysters preferentially accumulated F(+) coliphage, an enteric viral surrogate, to their greatest levels from late November through January, with a concentration factor of up to 99-fold. However, similar increases in accumulation of the other indicator microorganisms were not observed. These findings suggest that the seasonal occurrence of shellfish-related illnesses by enteric viruses is, in part, the result of seasonal physiological changes undergone by the oysters that affect their ability to accumulate viral particles from estuarine waters.  (+info)