PASK (proline-alanine-rich STE20-related kinase), a regulatory kinase of the Na-K-Cl cotransporter (NKCC1). (65/556)

Although the phosphorylation-dependent activation of the Na-K-Cl cotransporter (NKCC1) has been previously well documented, the identity of the kinase(s) responsible for this regulation has proven elusive. Recently, Piechotta et al. (Piechotta, K., Lu, J., and Delpire, E. (2002) J. Biol. Chem. 277, 50812-50819) reported the binding of PASK (also referred as SPAK (STE20/SPS1-related proline-alanine-rich kinase)) and OSR1 (oxidative stress response kinase) to cation-chloride cotransporters KCC3, NKCC1, and NKCC2. In this report, we show that overexpression of a kinase inactive, dominant negative (DN) PASK mutant drastically reduces both shark (60 +/- 5%) and human (80 +/- 3%) NKCC1 activation. Overexpression of wild type PASK causes a small (sNKCC1 22 +/- 8% p < 0.05, hNKCC1 12 +/- 3% p < 0.01) but significant increase in shark and human cotransporter activity in HEK cells. Importantly, DNPASK also inhibits the phosphorylation of two threonines, contained in the previously described N-terminal regulatory domain. We additionally show the near complete restoration of NKCC1 activity in the presence of the protein phosphatase type 1 inhibitor calyculin A, demonstrating that DNPASK inhibition results from an alteration in kinase/phosphatase dynamics rather than from a decrease in functional cotransporter expression. Coimmunoprecipitation assays confirm PASK binding to NKCC1 in transfected HEK cells and further suggest that this binding is not a regulated event; neither PASK nor NKCC1 activity affects the association. In cells preloaded with 32Pi, the phosphorylation of PASK, but not DNPASK, coincides with that of NKCC1 and increases 5.5 +/- 0.36-fold in low [Cl]e. These data conclusively link PASK with the phosphorylation and activation of NKCC1.  (+info)

ATP-induced reverse temperature effect in isohemoglobins from the endothermic porbeagle shark (Lamna nasus). (66/556)

The evolutionary convergence of endothermic tunas and lamnid sharks is unique. Their heat exchanger-mediated endothermy represents an interesting example of the evolutionary pressure associated with this specific characteristic. To assess the implications of endothermy for gas transport and the possible contribution of hemoglobin (Hb), we investigated the effect of temperature on the oxygen equilibria of purified isohemoglobin components V and III from the porbeagle shark (Lamna nasus). In the absence of ATP the effect of temperature on oxygen affinity is normal in both Hb III (P50 = 0.9 and 2.2 torr at 10 and 26 degrees C, respectively) and Hb V (P50 = 1.5 and 2.5 torr at 10 and 26 degrees C, respectively). In the presence of this effector P50 decreases with increasing temperature in both components (P50 at 10 and 26 degrees C = 9.9 and 8.4 torr (Hb III), respectively, and 9.6 and 7.4 torr (Hb V), respectively. The reverse temperature effect in the presence of ATP will reduce the risk of oxygen loss from the arterial to the venous blood by lowering the oxygen tension gradient between the blood vessels. The mechanism behind the reverse temperature effect resembles that found in the bluefin tuna (Thunnus thynnus), an endothermic teleost, thus evidencing further convergent evolution.  (+info)

J chain in the nurse shark: implications for function in a lower vertebrate. (67/556)

J chain is a small polypeptide covalently attached to polymeric IgA and IgM. In humans and mice, it plays a role in binding Ig to the polymeric Ig receptor for transport into secretions. The putative orthologue of mammalian J chain has been identified in the nurse shark by sequence analysis of cDNA and the polypeptide isolated from IgM. Conservation with J chains from other species is relatively poor, especially in the carboxyl-terminal portion, and, unlike other J chains, the shark protein is not acidic. The only highly conserved segment in all known J chains is a block of residues surrounding an N-linked glycosylation site. Of the eight half-cystine residues that are conserved in mammalian J chains, three are lacking in the nurse shark, including two in the carboxyl-terminal segment that have been reported to be required for binding of human J chain-containing IgA to secretory component. Taken together with these data, the relative abundance of J chain transcripts in the spleen and their absence in the spiral valve (intestine) suggest that J chain in nurse sharks may not have a role in Ig secretion. Analysis of J chain sequences in diverse species is in agreement with accepted phylogenetic relationships, with the exception of the earthworm, suggesting that the reported presence of J chain in invertebrates should be reassessed.  (+info)

Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. (68/556)

Comparisons of DNA sequences among evolutionarily distantly related genomes permit identification of conserved functional regions in noncoding DNA. Hox genes are highly conserved in vertebrates, occur in clusters, and are uninterrupted by other genes. We aligned (PipMaker) the nucleotide sequences of the HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human, and mouse, which are separated by approximately 500 million years of evolution. In support of our approach, several identified putative regulatory elements known to regulate the expression of Hox genes were recovered. The majority of the newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac database). The regulatory intergenic regions located between the genes that are expressed most anteriorly in the embryo are longer and apparently more evolutionarily conserved than those at the other end of Hox clusters. Different presumed regulatory sequences are retained in either the Aalpha or Abeta duplicated Hox clusters in the fish lineages. This suggests that the conserved elements are involved in different gene regulatory networks and supports the duplication-deletion-complementation model of functional divergence of duplicated genes.  (+info)

Comparative studies of high performance swimming in sharks I. Red muscle morphometrics, vascularization and ultrastructure. (69/556)

Tunas (family Scombridae) and sharks in the family Lamnidae are highly convergent for features commonly related to efficient and high-performance (i.e. sustained, aerobic) swimming. High-performance swimming by fishes requires adaptations augmenting the delivery, transfer and utilization of O(2) by the red myotomal muscle (RM), which powers continuous swimming. Tuna swimming performance is enhanced by a unique anterior and centrally positioned RM (i.e. closer to the vertebral column) and by structural features (relatively small fiber diameter, high capillary density and greater myoglobin concentration) increasing O(2) flux from RM capillaries to the mitochondria. A study of the structural and biochemical features of the mako shark (Isurus oxyrinchus) RM was undertaken to enable performance-capacity comparisons of tuna and lamnid RM. Similar to tunas, mako RM is positioned centrally and more anterior in the body. Another lamnid, the salmon shark (Lamna ditropis), also has this RM distribution, as does the closely related common thresher shark (Alopias vulpinus; family Alopiidae). However, in both the leopard shark (Triakis semifasciata) and the blue shark (Prionace glauca), RM occupies the position where it is typically found in most fishes; more posterior and along the lateral edge of the body. Comparisons among sharks in this study revealed no differences in the total RM quantity (approximately 2-3% of body mass) and, irrespective of position within the body, RM scaling is isometric in all species. Sharks thus have less RM than do tunas (4-13% of body mass). Relative to published data on other shark species, mako RM appears to have a higher capillary density, a greater capillary-to-fiber ratio and a higher myoglobin concentration. However, mako RM fiber size does not differ from that reported for other shark species and the total volume of mitochondria in mako RM is similar to that reported for other sharks and for tunas. Lamnid RM properties thus suggest a higher O(2) flux capacity than in other sharks; however, lamnid RM aerobic capacity appears to be less than that of tuna RM.  (+info)

Comparative studies of high performance swimming in sharks II. Metabolic biochemistry of locomotor and myocardial muscle in endothermic and ectothermic sharks. (70/556)

Metabolic enzyme activities in red (RM) and white (WM) myotomal muscle and in the heart ventricle (HV) were compared in two lamnid sharks (shortfin mako and salmon shark), the common thresher shark and several other actively swimming shark species. The metabolic enzymes measured were citrate synthase (CS), an index of aerobic capacity, and lactate dehydrogenase (LDH), an index of anaerobic capacity. WM creatine phosphokinase (CPK) activity, an index of rapid ATP production during burst swimming, was also quantified. Enzyme activities in RM, WM and HV were similar in the two lamnid species. Interspecific comparisons of enzyme activities at a common reference temperature (20 degrees C) show no significant differences in RM CS activity but higher CS activity in the WM and HV of the lamnid sharks compared with the other species. For the other enzymes, activities in lamnids overlapped with those of other shark species. Comparison of the HV spongy and compact myocardial layers in mako, salmon and thresher sharks reveals a significantly greater spongy CS activity in all three species but no differences in LDH activity. Adjustment of enzyme activities to in vivo RM and WM temperatures in the endothermic lamnids elevates CS and LDH in both tissues relative to the ectothermic sharks. Thus, through its enhancement of both RM and WM enzyme activity, endothermy may be an important determinant of energy supply for sustained and burst swimming in the lamnids. Although lamnid WM is differentially warmed as a result of RM endothermy, regional differences in WM CS and LDH activities and thermal sensitivities (Q(10) values) were not found. The general pattern of the endothermic myotomal and ectothermic HV muscle metabolic enzyme activities in the endothermic lamnids relative to other active, ectothermic sharks parallels the general pattern demonstrated for the endothermic tunas relative to their ectothermic sister species. However, the activities of all enzymes measured are lower in lamnids than in tunas. Relative to lamnids, the presence of lower WM enzyme activities in the thresher shark (which is in the same order as the lamnids, has an RM morphology similar to that of the mako and salmon sharks and may be endothermic) suggests that other factors, such as behavior and swimming pattern, also affect shark myotomal organization and metabolic function.  (+info)

Regulation of Na,K-ATPase by PLMS, the phospholemman-like protein from shark: molecular cloning, sequence, expression, cellular distribution, and functional effects of PLMS. (71/556)

In Na,K-ATPase membrane preparations from shark rectal glands, we have previously identified an FXYD domain-containing protein, phospholemman-like protein from shark, PLMS. This protein was shown to associate and modulate shark Na,K-ATPase activity in vitro. Here we describe the complete coding sequence, expression, and cellular localization of PLMS in the rectal gland of the shark Squalus acanthias. The mature protein contained 74 amino acids, including the N-terminal FXYD motif and a C-terminal protein kinase multisite phosphorylation motif. The sequence is preceded by a 20 amino acid candidate cleavable signal sequence. Immunogold labeling of the Na,K-ATPase alpha-subunit and PLMS showed the presence of alpha and PLMS in the basolateral membranes of the rectal gland cells and suggested their partial colocalization. Furthermore, through controlled proteolysis, the C terminus of PLMS containing the protein kinase phosphorylation domain can be specifically cleaved. Removal of this domain resulted in stimulation of maximal Na,K-ATPase activity, as well as several partial reactions. Both the E1 approximately P --> E2-P reaction, which is partially rate-limiting in shark, and the K+ deocclusion reaction, E2(K) --> E1, are accelerated. The latter may explain the finding that the apparent Na+ affinity was increased by the specific C-terminal PLMS truncation. Thus, these data are consistent with a model where interaction of the phosphorylation domain of PLMS with the Na,K-ATPase alpha-subunit is important for the modulation of shark Na,K-ATPase activity.  (+info)

Isolation and characterization of an IgNAR variable domain specific for the human mitochondrial translocase receptor Tom70. (72/556)

The new antigen receptor (IgNAR) from sharks is a disulphide bonded dimer of two protein chains, each containing one variable and five constant domains, and functions as an antibody. In order to assess the antigen-binding capabilities of isolated IgNAR variable domains (VNAR), we have constructed an in vitro library incorporating synthetic CDR3 regions of 15-18 residues in length. Screening of this library against the 60 kDa cytosolic domain of the 70 kDa outer membrane translocase receptor from human mitochondria (Tom70) resulted in one dominant antigen-specific clone (VNAR 12F-11) after four rounds of in vitro selection. VNAR 12F-11 was expressed into the Escherichia coli periplasm and purified by anti-FLAG affinity chromatography at yields of 3 mg x L(-1). Purified protein eluted from gel filtration columns as a single monomeric protein and CD spectrum analysis indicated correct folding into the expected beta-sheet conformation. Specific binding to Tom70 was demonstrated by ELISA and BIAcore (Kd = 2.2 +/- 0.31 x 10(-9) m-1) indicating that these VNAR domains can be efficiently displayed as bacteriophage libraries, and selected against target antigens with an affinity and stability equivalent to that obtained for other single domain antibodies. As an initial step in producing 'intrabody' variants of 12F-11, the impact of modifying or removing the conserved immunoglobulin intradomain disulphide bond was assessed. High affinity binding was only retained in the wild-type protein, which combined with our inability to affinity mature 12F-11, suggests that this particular VNAR is critically dependent upon precise CDR loop conformations for its binding affinity.  (+info)