Germ cells, gonads and sex reversal in marsupials. (49/852)

The formation of the testis or ovary is a critical step in development. Alterations in gonadal development during fetal or postnatal life can lead to intersexuality or infertility. Several model systems have been particularly useful in studying gonadal differentiation, the eutherian mammal and amphibia, fish, and birds. However, marsupials provide a unique opportunity to investigate gonadal development and the interactions of genes and hormones in gonadal differentiation and germ cell development in all mammals. On the one hand the genetic mechanisms appear to be identical to those in eutherian mammals, including the testis-determining SRY gene. On the other hand, marsupials retain in part the plasticity of the amphibian gonad to hormonal manipulation. It is possible to induce female to male and also male to female gonadal sex reversal in marsupials by hormonal manipulation, and oestradiol can induce male germ cells to enter meiosis at the time the oogonia do. In addition, in marsupials the development of the scrotum and mammary glands are independent of testicular androgens and instead are controlled by a gene or genes on the X-chromosome. Thus marsupials provide a number of opportunities for manipulating the sexual differentiation of the gonads that are not possible in eutherian mammals and so provide a unique perspective for understanding the common mechanisms controlling sexual development.  (+info)

Gonad development: signals for sex. (50/852)

The formation of testes or ovaries in the mammalian embryo is critical in determining sexual identity and the ability to reproduce. Recent studies have begun to illuminate the cellular signalling events required for development of functional testes.  (+info)

Expression of AMH, SF1, and SOX9 in gonads of genetic female chickens during sex reversal induced by an aromatase inhibitor. (51/852)

Aromatase inhibitors administered prior to histological signs of gonadal sex differentiation can induce sex reversal of genetic female chickens. Under the effects of Fadrozole (CGS 16949A), a nonsteroidal aromatase inhibitor, the right gonad generally becomes a testis, and the left gonad a testis or an ovotestis. We have compared the expression pattern of the genes encoding AMH (the anti-Mullerian hormone), SF1 (steroidogenic factor 1), and SOX9 (a transcription factor related to SRY) in these sex-reversed gonads with that in control testes and ovaries, using in situ hybridization with riboprobes on gonadal sections. In control males, the three genes are expressed in Sertoli cells of testicular cords; however, only SOX9 is male specific, since as observed previously AMH and SF1 but not SOX9 are expressed in the control female gonads. In addition to testicular-like cords, sex-reversed gonads present many lacunae with a composite, thick and flat epithelium. We show that during embryonic and postnatal development, AMH, SF1 and SOX9 are expressed in the epithelium of testicular-like cords and in the thickened part but not in the flattened part of the epithelium of composite lacunae. AMH and SF1 but not SOX9 are expressed in follicular cells of ovotestes. Coexpression of the three genes, of which SOX9 is a specific Sertoli-cell marker, provides strong evidence for the transdifferentiation of ovarian into testicular epithelium in gonads of female chickens treated with Fadrozole.  (+info)

Sex and the neighboring cell. (52/852)

Bizarre sexual abnormalities attract attention, even in the scientific world. Recent studies of the Drosophila doublesex gene have produced a more accurate description of the origin, growth, and differentiation of the male and female genitalia. The big surprise is that the neighbors have more influence than previously recognized.  (+info)

The sex determination gene doublesex regulates the A/P organizer to direct sex-specific patterns of growth in the Drosophila genital imaginal disc. (53/852)

Each Drosophila genital imaginal disc contains primordia for both male and female genitalia and analia. The sexually dimorphic development of this disc is governed by the sex-specific expression of doublesex (dsx). We present data that substantially revises our understanding of how dsx controls growth and differentiation in the genital disc. The classical view of genital disc development is that in each sex, dsx autonomously "represses" the development of the inappropriate genital primordium while allowing the development of the appropriate primordium. Instead, we show that dsx regulates the A/P organizer to control growth of each genital primordium, and then directs each genital primordium to differentiate defined adult structures in both sexes.  (+info)

RNA-Regulated TRA-1 nuclear export controls sexual fate. (54/852)

TRA-1, a member of the GLI family of transcription factors, is required for C. elegans female development. We find that TRA-1 has a sex-specific distribution consistent with its role in female development: nuclear TRA-1 is higher in hermaphrodite intestines and in specific germline regions than in males. TRA-1 patterns rely on nuclear export since treatment with leptomycin B, a CRM1-dependent export inhibitor, increases nuclearTRA-1 in males. TRA-1 export requires TRA-1 binding to the tra-2 3' untranslated region (3' UTR), as disruption of binding increases nuclear TRA-1 and female development. Our data are consistent with coexport of a TRA-1/tra-2 mRNA complex reducing TRA-1 nuclear activity, and identify an interesting RNA-based mechanism for controlling transcriptional activity and cell fate determination.  (+info)

Alterations in development of reproductive and endocrine systems of wildlife populations exposed to endocrine-disrupting contaminants. (55/852)

Wildlife and human populations are affected by contaminants in natural settings. This problem has been a growing concern over the last decade with the realization that various environmental chemicals can alter the development and functioning of endocrine organs, cells and target tissues. Documented disruptions or alterations in reproductive activity, morphology or physiology in wildlife populations have been correlated with contaminant-induced modifications in endocrine system functioning. Alterations of the endocrine system are complex, and not limited to a particular organ or molecular mechanism. For instance, contaminants have been shown to (1) act as hormone receptor agonists or antagonists, (2) alter hormone production at its endocrine source, (3) alter the release of stimulatory or inhibitory hormones from the pituitary or hypothalamus, (4) alter hepatic enzymatic biotransformation of hormones, and (5) alter the concentration or functioning of serum-binding proteins, altering free hormone concentrations in the serum. This review focuses on two of these alterations, altered hormone synthesis and hepatic biotransformation, as a number of recent studies indicate that these actions are important components of endocrine disruption in developing organisms. The possible role of contaminants in altering sex determination mechanisms is also examined.  (+info)

Characterization of Bovidae sex-determining gene SRY. (56/852)

In mammals, testis determination is under the control of the sex-determining gene SRY. This Y-linked gene encodes a protein with a DNA binding domain similar to those found in high-mobility-group proteins. Here we report the cloning and sequences of the SRY genes of yak and Chinese native cattle. Our data show that SRY genes in Bovidae are less divergent, especially in the coding and 3' regions.  (+info)