(1/272) Flagellar determinants of bacterial sensitivity to chi-phage.

Bacteriophage chi is known to infect motile strains of enteric bacteria by adsorbing randomly along the length of a flagellar filament and then injecting its DNA into the bacterial cell at the filament base. Here, we provide evidence for a "nut and bolt" model for translocation of phage along the filament: the tail fiber of chi fits the grooves formed by helical rows of flagellin monomers, and active flagellar rotation forces the phage to follow the grooves as a nut follows the threads of a bolt.  (+info)

(2/272) The phylogenetic position of Serratia, Buttiauxella and some other genera of the family Enterobacteriaceae.

The phylogenetic relationships of the type strains of 38 species from 15 genera of the family Enterobacteriaceae were investigated by comparative 16S rDNA analysis. Several sequences of strains from the genera Citrobacter, Erwinia, Pantoea, Proteus, Rahnella and Serratia, analysed in this study, have been analysed previously. However, as the sequences of this study differ slightly from the published ones, they were included in the analysis. Of the 23 enterobacterial genera included in an overview dendrogram of relatedness, members of the genera Xenorhabdus, Photorhabdus, Proteus and Plesiomonas were used as a root. The other genera formed two groups which could be separated, although not exclusively, by signature nucleotides at positions 590-649 and 600-638. Group A contains species of Brenneria, Buttiauxella, Citrobacter, Escherichia, Erwinia, Klebsiella, Pantoea, Pectobacterium and Salmonella. All seven type strains of Buttiauxella share 16S rDNA similarities greater than 99%. Group B embraces two phylogenetically separate Serratia clusters, a lineage containing Yersinia species, Rahnella aquatica, Ewingella americana, and also the highly related pair Hafnia alvei and Obesumbacterium proteus.  (+info)

(3/272) Simultaneous enhancement of thermostability and catalytic activity of phospholipase A(1) by evolutionary molecular engineering.

The thermal stability and catalytic activity of phospholipase A(1) from Serratia sp. strain MK1 were improved by evolutionary molecular engineering. Two thermostable mutants were isolated after sequential rounds of error-prone PCR performed to introduce random mutations and filter-based screening of the resultant mutant library; we determined that these mutants had six (mutant TA3) and seven (mutant TA13) amino acid substitutions. Different types of substitutions were found in the two mutants, and these substitutions resulted in an increase in nonpolar residues (mutant TA3) or in differences between side chains for polar or charged residues (mutant TA13). The wild-type and mutant enzymes were purified, and the effect of temperature on the stability and catalytic activity of the enzymes was investigated. The melting temperatures of the TA3 and TA13 enzymes were increased by 7 and 11 degrees C, respectively, compared with the melting temperature of the wild-type enzyme. Thus, we found that evolutionary molecular engineering was an effective and efficient approach for increasing thermostability without compromising enzyme activity.  (+info)

(4/272) Identification of environmental Serratia plymuthica strains with the new combo panels type 1S.

Automated systems are required when numerous samples need to be processed, offering both high through put and test of a multiple simultaneously. This study was performed to compare the MicroScan WalkAway automated identification system in conjunction with the new MicroScan Combo Neg Panels Type 1S with conventional biochemical methods for identifying ten environmental Serratia plymuthica strains. High correlation between both methods were observed for all the 21 tests evaluated, and the MicroScan system was found capable of correctly identifying all S. plymuthica strains tested. In all tests, the percentage of correlation was 100%, except in raffinose test (91%).  (+info)

(5/272) Expression of the antifeeding gene anfA1 in Serratia entomophila requires rpoS.

The rpoS gene of Serratia entomophila BC4B was cloned and used to create rpoS-mutant strain BC4BRS. Larvae of the New Zealand grass grub Costelytra zealandica infected with BC4BRS became amber colored but continued to feed, albeit to a lesser extent than infected larvae. Subsequently, we found that expression of the antifeeding gene anfA1 in trans was substantially reduced in BC4BRS relative to that in the parental strain BC4B. Our data show that a functional rpoS gene is vital for full expression of anfA1 and for development of the antifeeding component of amber disease.  (+info)

(6/272) Assessment of flhDC mRNA levels in Serratia liquefaciens swarm cells.

We reported previously that artificial overexpression of the flhDC operon in liquid-grown Serratia liquefaciens resulted in the formation of filamentous, multinucleated, and hyperflagellated cells that were indistinguishable from surface-induced swarm cells (L. Eberl, G. Christiansen, S. Molin, and M. Givskov, J. Bacteriol. 178:554-559, 1996). In the present report we show by means of reporter gene measurements, Northern analysis, and in situ reverse transcription-PCR that the amount of flhDC mRNA in surface-grown swarm cells does not exceed the maximum level found in nondifferentiated, vegetative cells. This suggests that surface-induced S. liquefaciens swarm cell differentiation, although dependent on flhDC gene expression, does not occur through elevated flhDC mRNA levels.  (+info)

(7/272) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria.

In gram-negative bacteria, many important changes in gene expression and behavior are regulated in a population density-dependent fashion by N-acyl homoserine lactone (AHL) signal molecules. Exudates from pea (Pisum sativum) seedlings were found to contain several separable activities that mimicked AHL signals in well-characterized bacterial reporter strains, stimulating AHL-regulated behaviors in some strains while inhibiting such behaviors in others. The chemical nature of the active mimic compounds is currently unknown, but all extracted differently into organic solvents than common bacterial AHLs. Various species of higher plants in addition to pea were found to secrete AHL mimic activities. The AHL signal-mimic compounds could prove to be important in determining the outcome of interactions between higher plants and a diversity of pathogenic, symbiotic, and saprophytic bacteria.  (+info)

(8/272) Antigen 43 from Escherichia coli induces inter- and intraspecies cell aggregation and changes in colony morphology of Pseudomonas fluorescens.

Antigen 43 (Ag43) is a surface-displayed autotransporter protein of Escherichia coli. By virtue of its self-association characteristics, this protein is able to mediate autoaggregation and flocculation of E. coli cells in static cultures. Additionally, surface display of Ag43 is associated with a distinct frizzy colony morphology in E. coli. Here we show that Ag43 can be expressed in a functional form on the surface of the environmentally important Pseudomonas fluorescens strain SBW25 with ensuing cell aggregation and frizzy colony types. Using green fluorescence protein-tagged cells, we demonstrate that Ag43 can be used as a tool to provide interspecies cell aggregation between E. coli and P. fluorescens. Furthermore, Ag43 expression enhances biofilm formation in P. fluorescens to glass surfaces. The versatility of this protein was also reflected in Ag43 surface display in a variety of other gram-negative bacteria. Display of heterologous Ag43 in selected bacteria might offer opportunities for rational design of multispecies consortia where the concerted action of several bacterial species is required, e.g., waste treatment and degradation of pollutants.  (+info)