Susceptibility of TT virus to interferon therapy. (49/18435)

TT virus (TTV) is a newly identified single-stranded DNA virus. We retrospectively analysed serum samples from sixteen patients, infected with both hepatitis C virus (HCV) and TTV, and who had been treated with interferon. An elevated serum alanine aminotransferase level after interferon was associated with persistence of HCV (abnormal in five of seven patients with persistence of HCV compared with normal in all nine patients who showed eradication of HCV) irrespective of persistence of TTV. Comparison of partial viral DNA nucleotide sequences and phylogenetic analysis showed that viral strains that had a high identity to the prototype virus were more resistant to interferon than those showing low nucleotide sequence identity. Although we observed no liver cell injury caused by persistent TTV infection, the mechanism(s) of TTV resistance to interferon should be further investigated for a better understanding of viral diseases and establishment of therapy.  (+info)

A hepatitis E virus variant from the United States: molecular characterization and transmission in cynomolgus macaques. (50/18435)

The partial sequence of a hepatitis E virus (HEV-US1) isolated from a patient in the United States (US), suffering from acute viral hepatitis with no known risk factors for acquiring HEV, has been reported. These sequences were significantly different from previously characterized HEV isolates, alluding to the existence of a distinct human variant. In this paper, we report the near full-length sequences of HEV-US1 and a second US isolate (HEV-US2). HEV-US2 was identified in a US patient suffering from acute viral hepatitis. These sequences verify the presence of a new HEV strain in North America and provide information as to the degree of variability between variants. The HEV-US nucleotide sequences are 92% identical to each other and only 74% identical to the Burmese and Mexican strains. Amino acid and phylogenetic analyses also demonstrate that the US isolates are genetically distinct, suggesting the presence of three genotypes of HEV. Serum from the second US patient induced hepatitis following inoculation into a cynomolgus macaque. Within 2-4 weeks, HEV-US2 RNA was detectable in both the serum and faecal material coinciding with elevated serum alanine transaminase levels. Infection resolved as antibody titres increased 8 weeks post-inoculation.  (+info)

New defective RNAs from citrus tristeza virus: evidence for a replicase-driven template switching mechanism in their generation. (51/18435)

Defective RNAs (D-RNAs) ranging in size from 1968 to 2759 nt were detected in four citrus tristeza virus (CTV) isolates by hybridization of electroblotted dsRNAs with two probes specific for the 5'- and 3'-terminal genomic regions. The RNAs that hybridized with both probes were eluted, cloned and sequenced. Comparison with the sequences of the corresponding genomic regions of the helper virus showed, in all cases, over 99% nucleotide identity and direct repeats of 4-5 nt flanking or in the vicinity of the junction sites. The presence of the repeats from two separate genome locations suggests a replicase-driven template switching mechanism for the generation of these CTV D-RNAs. Two of the CTV isolates that differed greatly in their pathogenicity contained an identical D-RNA, suggesting that it is unlikely that this D-RNA is involved in symptom modulation, which may be caused by another factor.  (+info)

Unique DNA binding specificity of the binuclear zinc AlcR activator of the ethanol utilization pathway in Aspergillus nidulans. (52/18435)

AlcR is the transcriptional activator in Aspergillus nidulans, necessary for the induction of the alc gene cluster. It belongs to the Zn2Cys6 zinc cluster protein family, but contains some striking differences compared with other proteins of this group. In this report, we show that no dimerization element is present in the entire AlcR protein which occurs in solution as a monomer and binds also to its cognate sites as a monomer. Another important feature of AlcR is its unique specificity for single sites occurring naturally as inverted or direct repeats and sharing a common motif, 5'-(T/A)GCGG-3'. Like most other Zn2Cys6 proteins, AlcR contacts directly with the CGG triplet and, in addition, the upstream adjacent guanine is required for high affinity binding. We also establish that the flanking regions outside the core play an essential role in tight binding. From our in vitro analysis, we propose an optimal AlcR-binding site which is 5'-PuNGCGG-AT rich 3'.  (+info)

Reciprocal expression in CD4 or CD8 subsets of different members of the V alpha 11 gene family correlates with sequence polymorphism. (53/18435)

Previous staining studies with TCR V alpha 11-specific mAbs showed that V alpha 11.1/11.2 (AV11S1 and S2) expression was selectively favored in the CD4+ peripheral T cell population. As this phenomenon was essentially independent of the MHC haplotype, it was suggested that AV11S1 and S2 TCRs exert a preference for recognition of class II MHC molecules. The V alpha segment of the TCR alpha-chain is suggested to have a primary role in shaping the T cell repertoire due to selection for class I or II molecules acting through the complementarity determining regions (CDR) 1 alpha and CDR2 alpha residues. We have analyzed the repertoire of V alpha 11 family members expressed in C57BL/6 mice and have identified a new member of this family; AV11S8. We show that, whereas AV11S1 and S2 are more frequent in CD4+ cells, AV11S3 and S8 are more frequent in CD8+ cells. The sequences in the CDR1 alpha and CDR2 alpha correlate with differential expression in CD4+ or CD8+ cells, a phenomenon that is also observed in BALB/c mice. With no apparent restriction in TCR J alpha usage or CDR3 alpha length in C57BL/6, these findings support the idea of V alpha-dependent T cell repertoire selection through preferential recognition of MHC class I or class II molecules.  (+info)

Comparisons of genomic structures and chromosomal locations of the mouse aldose reductase and aldose reductase-like genes. (54/18435)

Aldose reductase (AR), best known as the first enzyme in the polyol pathway of sugar metabolism, has been implicated in a wide variety of physiological functions and in the etiology of diabetic complications. We have determined the structures and chromosomal locations of the mouse AR gene (Aldor1) and of two genes highly homologous to Aldor1: the fibroblast growth factor regulated protein gene (Fgfrp) and the androgen regulated vas deferens protein gene (Avdp). The number of introns and their locations in the mouse Aldor1 gene are identical to those of rat and human AR genes and also to those of Fgfrp and Avdp. Mouse Aldor1 gene was found to be located near the Cald1 (Caldesmon) and Ptn (Pleiotropin) loci at the proximal end of chromosome 6. The closely related genes Fgfrp and Avdp were also mapped in this region of the chromosome, suggesting that these three genes may have arisen by a gene duplication event.  (+info)

An integrated map of chromosome 18 CAG trinucleotide repeat loci. (55/18435)

Expansions of trinucleotide CAG repeats have been demonstrated in at least eight neurodegenerative disorders, and suggested to occur in several others, including bipolar disorder and schizophrenia. Chromosome 18 loci have been implicated in bipolar disorder pedigrees by linkage analysis. To address this putative link between chromosome 18 CAG trinucleotide repeats and neuropsychiatric illness, we have screened a chromosome 18 cosmid library (LL18NCO2" AD") and identified 14 novel candidate loci. Characterisation of these loci involved repeat flank sequencing, estimation of polymorphism frequency and mapping using FISH as well as radiation hybrid panels. These mapped trinucleotide loci will be useful in the investigation of chromosome 18 in neurodegenerative or psychiatric conditions, and will serve to integrate physical and radiation hybrid maps of chromosome 18.  (+info)

Temporal and spatial control of the Sycp1 gene transcription in the mouse meiosis: regulatory elements active in the male are not sufficient for expression in the female gonad. (56/18435)

Transcription controls active at the initial stages of meiosis are clearly key elements in the regulation of germinal differentiation. Transcription of the Sycp1 gene (synaptonemal complex protein 1) starts as early as the leptotene and zygotene stages. Constructs with Sycp1 5' upstream sequences directed the expression of reporter genes to pachytene spermatocytes in transgenic mice. A short fragment encompassing the transcription start (n.t. -54 to +102) was sufficient for stage-specific expression in the adult male and for temporal regulation during development. Upstream enhancer element(s) quantitatively regulating expression were localized in the region between -54 and -260. The gene is normally expressed both in the male and female gonads, but none of the promoter sequences active in the testis allowed the expression of reporter genes during meiosis in the ovary.  (+info)