Oviductin, the Xenopus laevis oviductal protease that processes egg envelope glycoprotein gp43, increases sperm binding to envelopes, and is translated as part of an unusual mosaic protein composed of two protease and several CUB domains. (33/3405)

The glycoprotein envelope surrounding the Xenopus laevis egg is converted from an unfertilizable to a fertilizable form during transit through the pars recta portion of the oviduct. Envelope conversion involves the pars recta protease oviductin, which selectively hydrolyzes envelope glycoprotein gp43 to gp41. Oviductin cDNA was cloned, and sequence analysis revealed that the protease is translated as the N terminus of an unusual mosaic protein. In addition to the oviductin protease domain, a protease domain with low identity to oviductin was present, possessing an apparent nonfunctional catalytic site. Three CUB domains were also present, which are related to the mammalian spermadhesin molecules implicated in mediating sperm-envelope interactions. We propose that during post-translational proteolytic processing of the mosaic oviductin glycoprotein, the processed N-terminal protease domain is released coupled to two C-terminal CUB domains and constitutes the enzymatically active protease molecule. In functional studies, isolated coelomic egg envelopes treated with oviductin purified from the oviduct showed a dramatic increase in sperm binding. This observation established that oviductin alone was the oviductal factor responsible for converting the egg envelope to a sperm-penetrable form, via an increase in sperm binding. Trypsin mimicked oviductin's effect on envelope hydrolysis and sperm binding, demonstrating that gp43 processing is the only requirement for envelope conversion.  (+info)

Characterization of a novel trypanosome lytic factor from human serum. (34/3405)

Natural resistance of humans to the cattle pathogen Trypanosoma brucei brucei has been attributed to the presence in human serum of nonimmune factors that lyse the parasite. Normal human serum contains two trypanosome lytic factors (TLFs). TLF1 is a 500-kDa lipoprotein, which is reported to contain apolipoprotein A-I (apoA-I), haptoglobin-related protein (Hpr), hemoglobin, paraoxonase, and apoA-II, whereas TLF2 is a larger, poorly characterized particle. We report here a new immunoaffinity-based purification procedure for TLF2 and TLF1, as well as further characterization of the components of each purified TLF. Immunoaffinity-purified TLF1 has a specific activity 10-fold higher than that of TLF1 purified by previously described methods. Moreover, we find that TLF1 is a lipoprotein particle that contains mainly apoA-I and Hpr, trace amounts of paraoxonase, apoA-II, and haptoglobin, but no detectable hemoglobin. Characterization of TLF2 reveals that it is a 1,000-kDa protein complex containing mainly immunoglobulin M, apoA-I, and Hpr but less than 1% detectable lipid.  (+info)

Plasmin converts factor X from coagulation zymogen to fibrinolysis cofactor. (35/3405)

Known anticoagulant pathways have been shown to exclusively inhibit blood coagulation cofactors and enzymes. In the current work, we first investigated the possibility of a novel anticoagulant mechanism that functions at the level of zymogen inactivation. Utilizing both clotting and chromogenic assays, the fibrinolysis protease plasmin was found to irreversibly inhibit the pivotal function of factor X (FX) in coagulation. This was due to cleavage at several sites, the location of which were altered by association of FX with procoagulant phospholipid (proPL). The final products were approximately 28 and approximately 47 kDa for proPL-bound and unbound FX, respectively, which did not have analogues when activated FX (FXa) was cleaved instead. We next investigated whether the FX derivatives could interact with the plasmin precursor plasminogen, and we found that plasmin exposed a binding site only on proPL-bound FX. The highest apparent affinity was for the 28-kDa fragment, which was identified as the light subunit disulfide linked to a small fragment of the heavy subunit (Met-296 to approximately Lys-330). After cleavage by plasmin, proPL-bound FX furthermore was observed to accelerate plasmin generation by tissue plasminogen activator. Thus, a feedback mechanism localized by proPL is suggested in which plasmin simultaneously inhibits FX clotting function and converts proPL-bound FX into a fibrinolysis cofactor. These data also provide the first evidence for an anticoagulant mechanism aimed directly at the zymogen FX.  (+info)

The Saccharomyces cerevisiae YOR163w gene encodes a diadenosine 5', 5"'-P1,P6-hexaphosphate (Ap6A) hydrolase member of the MutT motif (Nudix hydrolase) family. (36/3405)

The YOR163w open reading frame on chromosome XV of the Saccharomyces cerevisiae genome encodes a member of the MutT motif (nudix hydrolase) family of enzymes of Mr 21,443. By cloning and expressing this gene in Escherichia coli and S. cerevisiae, we have shown the product to be a (di)adenosine polyphosphate hydrolase with a previously undescribed substrate specificity. Diadenosine 5',5"'-P1, P6-hexaphosphate is the preferred substrate, and hydrolysis in H218O shows that ADP and adenosine 5'-tetraphosphate are produced by attack at Pbeta and AMP and adenosine 5'-pentaphosphate are produced by attack at Palpha with a Km of 56 microM and kcat of 0.4 s-1. Diadenosine 5',5"'-P1,P5-pentaphosphate, adenosine 5'-pentaphosphate, and adenosine 5'-tetraphosphate are also substrates, but not diadenosine 5',5"'-P1,P4-tetraphosphate or other dinucleotides, mononucleotides, nucleotide sugars, or nucleotide alcohols. The enzyme, which was shown to be expressed in log phase yeast cells by immunoblotting, displays optimal activity at pH 6.9, 50 degrees C, and 4-10 mM Mg2+ (or 200 microM Mn2+). It has an absolute requirement for a reducing agent, such as dithiothreitol (1 mM), and is inhibited by Ca2+ with an IC50 of 3.3 mM and F- (noncompetitively) with a Ki of 80 microM. Its function may be to eliminate potentially toxic dinucleoside polyphosphates during sporulation.  (+info)

Processing of the fibrillin-1 carboxyl-terminal domain. (37/3405)

To investigate the processing and general properties of the fibrillin-1 carboxyl-terminal domain, three protein expression constructs have been developed as follows: one without the domain, one with the domain, and one with a mutation near the putative proteolytic processing site. The constructs have been expressed in two eukaryotic model systems, baculoviral and CHO-K1. Post-translational modifications that normally occur in fibrillin-1, including glycosylation, signal peptide cleavage, and carboxyl-terminal processing, occur in the three constructs in both cell systems. Amino-terminal sequencing of secreted protein revealed leader sequence processing at two sites, a primary site between Gly-24/Ala-25 and a secondary site of Ala-27/Asn-28. Processing of the carboxyl-terminal domain could be observed by migration differences in SDS-polyacrylamide gel electrophoresis and was evident in both mammalian and insect cells. Immunological identification by Western blotting confirmed the loss of the expected region. The failure of both cell systems to process the mutant construct shows that the multi-basic sequence is the site of proteolytic processing. Cleavage of the fibrillin-1 carboxyl-terminal domain occurred intracellularly in CHO-K1 cells in an early secretory pathway compartment as demonstrated by studies with secretion blocking agents. This finding, taken with the multi-basic nature of the cleavage site and observed calcium sensitivity of cleavage, suggests that the processing enzyme is a secretory pathway resident furin-like protease.  (+info)

Proteolytic processing of tomato ringspot nepovirus 3C-like protease precursors: definition of the domains for the VPg, protease and putative RNA-dependent RNA polymerase. (38/3405)

Tomato ringspot nepovirus (TomRSV) RNA-1 encodes a putative NTP-binding protein (NTB), a putative viral genome-linked protein (VPg), a putative RNA-dependent RNA polymerase (Pol) and a serine-like protease (Pro), which have been suggested to be involved in viral RNA replication. Proteolytic processing of protease precursors containing these proteins was studied in Escherichia coli and in vitro. The TomRSV protease could cleave the precursor proteins and release the predicted mature proteins or intermediate precursors. Although processing was detected at all three predicted cleavage sites (NTB-VPg, VPg-Pro and Pro-Pol), processing at the VPg-Pro cleavage site was inefficient, resulting in accumulation of the VPg-Pro intermediate precursor in E. coli and in vitro. In addition, the presence of the VPg sequence in the precursor resulted in increased cleavage at the Pro-Pol cleavage site in E. coli and in vitro. Direct N-terminal sequencing of the genomic RNA-linked VPg, of the mature protease purified from E. coli extracts and of radiolabelled mature polymerase purified from in vitro translation products revealed the sequences of the NTB-VPg, VPg-Pro and Pro-Pol dipeptide cleavage sites to be Q/S, Q/G and Q/S, respectively. In vitro processing at the NTB-VPg and Pro-Pol cleavage sites was not detected upon mutation or deletion of the conserved glutamine at the -1 position of the cleavage site. These results are discussed in light of the cleavage site specificity of the TomRSV protease.  (+info)

The complete genome sequence of the major component of a mild citrus tristeza virus isolate. (39/3405)

The genome of the Spanish mild isolate T385 of citrus tristeza virus (CTV) was completely sequenced and compared with the genomes of the severe isolates T36 (Florida), VT (Israel) and SY568 (California). The genome of T385 was 19,259 nt in length, 37 nt shorter than the genome of T36, and 33 and 10 nt longer than those of VT and SY568, respectively, but their organization was identical. T385 had mean nucleotide identities of 81.3, 89.3 and 94% with T36, VT and SY568, respectively. The 3' UTR had over 97% identity in all isolates, whereas the 5' UTR of T385 had 67% identity with VT, 66.3% with SY568 and only 42.5% with T36. In the coding regions, the nucleotide differences between T385 and VT were evenly distributed along the genome (around 90% identity); this was not observed between T385 and the other isolates. T385 and T36 had nucleotide identities around 90% in the eight 3'-terminal ORFs of the genome, but only 72.3% in ORF 1a, a divergence pattern similar to that reported previously for T36 and VT. T385 and SY568 had nucleotide identities close to 90% in the 5'- and 3'-terminal regions of the genome, whereas the central region had over 99% identity. Our data suggest that the central region in the SY568 genome results from RNA recombination between two CTV genomes, one of which was almost identical to T385.  (+info)

A Kazal-type trypsin inhibitor from the protochordate Ciona intestinalis. (40/3405)

A trypsin inhibitor from Ciona intestinalis, present throughout the animal, was purified by ion-exchange chromatography followed by four HPLC steps. By MS the molecular mass of the native form was determined to be 6675 Da. The N-terminal amino acid sequence was determined by protein sequencing, but appeared to be partial because the theoretical molecular mass of the protein was 1101 Da too low. Thermolysin treatment gave rise to several fragments each containing a single disulphide bridge. By sequence analysis and MS intramolecular disulphide bridges could unequivocally be assigned to connect the pairs Cys4-Cys37, Cys8-Cys30 and Cys16-Cys51. The structure of the inhibitor is homologous to Kazal-type trypsin inhibitors. The inhibitor constant, KI, for trypsin inhibition was 0.05 nM whereas chymotrypsin and elastase were not inhibited. To reveal the complete sequence the cDNA encoding the trypsin inhibitor was isolated. This cDNA of 454 bp predicts a protein of 82 amino acid residues including a 20 amino acid signal peptide. Moreover, the cDNA predicts a C-terminal extension of 11 amino acids compared to the part identified by protein sequencing. The molecular mass calculated for this predicted protein is in accordance with the measured value. This C-terminal sequence is unusual for Kazal-type trypsin inhibitors and has apparently been lost early in evolution. The high degree of conservation around the active site strongly supports the importance of the Kazal-type inhibitors.  (+info)