Wingless signaling leads to an asymmetric response to decapentaplegic-dependent signaling during sense organ patterning on the notum of Drosophila melanogaster. (1/535)

Wnt and Decapentaplegic cell signaling pathways act synergistically in their contribution to macrochaete (sense organ) patterning on the notum of Drosophila melanogaster. The Wingless-signaling pathway was ectopically activated by removing Shaggy activity (the homologue of vertebrate glycogen synthase kinase 3) in mosaics. Proneural activity is asymmetric within the Shaggy-deficient clone of cells and shows a fixed "polarity" with respect to body axis, independent of the precise location of the clone. This asymmetric response indicates the existence in the epithelium of a second signal, which we suggest is Decapentaplegic. Ectopic expression of Decapentaplegic induces extra macrochaetes only in cells which also receive the Wingless signal. Activation of Hedgehog signaling generates a long-range signal which can promote macrochaete formation in the Wingless activity domain. This signal depends upon decapentaplegic function. Autonomous activation of the Wingless signal response in cells causes them to attenuate or sequester this signal. Our results suggest a novel patterning mechanism which determines sense organ positioning in Drosophila.  (+info)

Central processing of pulsed pheromone signals by antennal lobe neurons in the male moth Agrotis segetum. (2/535)

Male moths use female-produced pheromones as orientation cues during the mate-finding process. In addition to the needs of evaluating the quality and quantity of the pheromone signal, the male moth also needs to resolve the filamentous structure of the pheromone plume to proceed toward the releasing point successfully. To understand how a discontinuous olfactory signal is processed at the central level, we used intracellular recording methods to characterize the response patterns of antennal lobe (AL) neurons to pulsatile stimulation with the full female-produced pheromone blend and its single components in male turnip moths, Agrotis segetum. Air puffs delivered at frequencies of 1, 3, 5, 7, or 10 Hz were used to carry the stimulus. Two types of AL neurons were characterized according to their capabilities to resolve stimulus pulses. The most common type could resolve at least 1-Hz pulses, thus termed fast neurons; another type could not resolve any pulses, thus termed slow neurons. When fast neurons were excited by stimuli, they always displayed biphasic response patterns, a depolarization phase followed by a hyperpolarization phase. This pattern could be evoked by stimulation with both the single pheromone components and the blend. The pulse-resolving capability of the fast neurons correlated significantly with the size of the hyperpolarization phase. When the amplitude was higher and the fall time of the hyperpolarization faster, the neuron could follow more pulses per second. Moreover, interactions between different pheromone components eliciting different response patterns did not improve the pulse-resolving capability of fast neurons.  (+info)

Active signaling of leg loading and unloading in the cockroach. (3/535)

The ability to detect changes in load is important for effective use of a leg in posture and locomotion. While a number of limb receptors have been shown to encode increases in load, few afferents have been demonstrated to signal leg unloading, which occurs cyclically during walking and is indicative of slipping or perturbations. We applied mechanical forces to the cockroach leg at controlled rates and recorded activities of the tibial group of campaniform sensilla, mechanoreceptors that encode forces through the strains they produce in the exoskeleton. Discrete responses were elicited from the group to decreasing as well as increasing levels of leg loading. Discharges of individual afferents depended on the direction of force application, and unit responses were correlated morphologically with the orientation of the receptor's cuticular cap. No units responded bidirectionally. Although discharges to decreasing levels of load were phasic, we found that these bursts could effectively encode the rate of force decreases. These discharges may be important in indicating leg unloading in the step cycle during walking and could rapidly signal force decreases during perturbations or loss of ground support.  (+info)

A spatial map of olfactory receptor expression in the Drosophila antenna. (4/535)

Insects provide an attractive system for the study of olfactory sensory perception. We have identified a novel family of seven transmembrane domain proteins, encoded by 100 to 200 genes, that is likely to represent the family of Drosophila odorant receptors. Members of this gene family are expressed in topographically defined subpopulations of olfactory sensory neurons in either the antenna or the maxillary palp. Sensory neurons express different complements of receptor genes, such that individual neurons are functionally distinct. The isolation of candidate odorant receptor genes along with a genetic analysis of olfactory-driven behavior in insects may ultimately afford a system to understand the mechanistic link between odor recognition and behavior.  (+info)

Preferential expression of biotransformation enzymes in the olfactory organs of Drosophila melanogaster, the antennae. (5/535)

Biotransformation enzymes have been found in the olfactory epithelium of vertebrates. We now show that in Drosophila melanogaster, a UDP-glycosyltransferase (UGT), as well as a short chain dehydrogenase/reductase and a cytochrome P450 are expressed specifically or preferentially in the olfactory organs, the antennae. The evolutionarily conserved expression of biotransformation enzymes in olfactory organs suggests that they play an important role in olfaction. In addition, we describe five Drosophila UGTs belonging to two families. All five UGTs contain a putative transmembrane domain at their C terminus as is the case for vertebrate UGTs where it is required for enzymatic activity. The primary sequence of the C terminus, including part of the transmembrane domain, differs between the two families but is highly conserved not only within each Drosophila family, but also between the members of one of the Drosophila families and vertebrate UGTs. The partial overlap of the conserved primary sequence with the transmembrane domain suggests that this part of the protein is involved in specific interactions occurring at the membrane surface. The presence of different C termini in the two Drosophila families suggests that they interact with different targets, one of which is conserved between Drosophila and vertebrates.  (+info)

Prospero distinguishes sibling cell fate without asymmetric localization in the Drosophila adult external sense organ lineage. (6/535)

The adult external sense organ precursor (SOP) lineage is a model system for studying asymmetric cell division. Adult SOPs divide asymmetrically to produce IIa and IIb daughter cells; IIa generates the external socket (tormogen) and hair (trichogen) cells, while IIb generates the internal neuron and sheath (thecogen) cells. Here we investigate the expression and function of prospero in the adult SOP lineage. Although Prospero is asymmetrically localized in embryonic SOP lineage, this is not observed in the adult SOP lineage: Prospero is first detected in the IIb nucleus and, during IIb division, it is cytoplasmic and inherited by both neuron and sheath cells. Subsequently, Prospero is downregulated in the neuron but maintained in the sheath cell. Loss of prospero function leads to 'double bristle' sense organs (reflecting a IIb-to-IIa transformation) or 'single bristle' sense organs with abnormal neuronal differentiation (reflecting defective IIb development). Conversely, ectopic prospero expression results in duplicate neurons and sheath cells and a complete absence of hair/socket cells (reflecting a IIa-to-IIb transformation). We conclude that (1) despite the absence of asymmetric protein localization, prospero expression is restricted to the IIb cell but not its IIa sibling, (2) prospero promotes IIb cell fate and inhibits IIa cell fate, and (3) prospero is required for proper axon and dendrite morphology of the neuron derived from the IIb cell. Thus, prospero plays a fundamental role in establishing binary IIa/IIb sibling cell fates without being asymmetrically localized during SOP division. Finally, in contrast to previous studies, we find that the IIb cell divides prior to the IIa cell in the SOP lineage.  (+info)

Sibling cell fate in the Drosophila adult external sense organ lineage is specified by prospero function, which is regulated by Numb and Notch. (7/535)

Specification of cell fate in the adult sensory organs is known to be dependent on intrinsic and extrinsic signals. We show that the homeodomain transcription factor Prospero (Pros) acts as an intrinsic signal for the specification of cell fates within the mechanosensory lineage. The sensory organ precursors divide to give rise to two secondary progenitors - PIIa and PIIb. Pros is expressed in PIIb, which gives rise to the neuron and thecogen cells. Loss of Pros function affects the identity of PIIb and neurons fail to differentiate. Pros misexpression is sufficient for the transformation of PIIa to PIIb fate. The expression of Pros in the normal PIIb cell appears to be regulated by Notch signaling.  (+info)

An essential role for the Drosophila Pax2 homolog in the differentiation of adult sensory organs. (8/535)

The adult peripheral nervous system of Drosophila includes a complex array of mechanosensory organs (bristles) that cover much of the body surface of the fly. The four cells (shaft, socket, sheath, and neuron) which compose each of these organs adopt distinct fates as a result of cell-cell signaling via the Notch (N) pathway. However, the specific mechanisms by which these cells execute their conferred fates are not well understood. Here we show that D-Pax2, the Drosophila homolog of the vertebrate Pax2 gene, has an essential role in the differentiation of the shaft cell. In flies bearing strong loss-of-function mutations in the shaven function of D-Pax2, shaft structures specifically fail to develop. Consistent with this, we find that D-Pax2 protein is expressed in all cells of the bristle lineage during the mitotic (cell fate specification) phase of bristle development, but becomes sharply restricted to the shaft and sheath cells in the post-mitotic (differentiative) phase. Two lines of evidence described here indicate that D-Pax2 expression and function is at least in part downstream of cell fate specification mechanisms such as N signaling. First, we find that the lack of late D-Pax2 expression in the socket cell (the sister of the shaft cell) is controlled by N pathway activity; second, we find that loss of D-Pax2 function is epistatic to the socket-to-shaft cell fate transformation caused by reduced N signaling. Finally, we show that misexpression of D-Pax2 is sufficient to induce the production of ectopic shaft structures. From these results, we propose that D-Pax2 is a high-level transcriptional regulator of the shaft cell differentiation program, and acts downstream of the N signaling pathway as a specific link between cell fate determination and cell differentiation in the bristle lineage.  (+info)