In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. (57/2336)

Previous research suggested that the beta-lyase-mediated production of a monomethylated selenium metabolite from Se-methylselenocysteine is a key step in cancer chemoprevention by this agent. In an attempt to affirm the concept, the present study was designed to evaluate the activity of methylseleninic acid, a compound that represents a simplified version of Se-methylselenocysteine without the amino acid moiety, thereby obviating the need for beta-lyase action. The in vitro experiments showed that methylseleninic acid was more potent than Se-methylselenocysteine in inhibiting cell accumulation and inducing apoptosis in TM12 (wild-type p53) and TM2H (nonfunctional p53) mouse mammary hyperplastic epithelial cells, and these effects were not attributable to DNA damage, as determined by the comet assay. In general, methylseleninic acid produced a more robust response at one-tenth the concentration of Se-methylselenocysteine. It is possible that these cell lines may have only a modest ability to generate a monomethylated selenium species from Se-methylselenocysteine via the beta-lyase enzyme. In contrast, methylseleninic acid already serves as a preformed active monomethylated metabolite, and this could be an underlying reason why methylseleninic acid acts more rapidly and exerts a more powerful effect than Se-methylselenocysteine in vitro. Interestingly, the distinction between these two compounds disappeared in vivo, where their cancer chemopreventive efficacies were found to be very similar to each other [in both methylnitrosourea and dimethylbenz(a)anthracene rat mammary tumor models]. The beta-lyase enzyme is present in many tissues; thus, animals have an ample capacity to metabolize Se-methylselenocysteine systemically. Therefore, Se-methylselenocysteine would be expected to behave like methylseleninic acid if beta-lyase is no longer a limiting factor. Taken together, the present in vitro and in vivo results provide strong evidence in support of our earlier hypothesis that a monomethylated selenium metabolite is important for cancer chemoprevention. Methylseleninic acid could be an excellent tool, especially for molecular mechanism studies in cell culture, and some of these attributes are discussed.  (+info)

Antioxidant nutrients and pulmonary function: the Third National Health and Nutrition Examination Survey (NHANES III). (58/2336)

Recent studies of chronic obstructive pulmonary disease have raised interest in its relation to nutrition. Several dietary antioxidants have been positively associated with lung function in healthy, general population samples. This study considered the separate and joint effects of vitamin C, vitamin E, beta-carotene, and selenium intake and used both dietary assessment and serum biomarkers of antioxidant status. The authors used data from the Third National Health and Nutrition Examination Survey comprising a sample representative of the US population in 1988-1994 (n = 18,162 subjects aged > or =17 years). Multiple linear regression analysis examined the separate and joint effects of the antioxidants on the ratio of forced expiratory volume in the first second (FEV1)/height2 adjusted for covariates. Each of the dietary and serum antioxidant nutrients was significantly associated with FEV1. When they were considered simultaneously (dietary and serum variables considered in separate models), independent associations were observed for most nutrients. Serum beta-carotene was less positively associated with FEV1 in smokers than nonsmokers, while serum selenium had a stronger positive association with FEV1 in smokers. The authors found that higher levels of antioxidant nutrients are associated with better lung function. The finding that the antioxidants differ in both their overall association with lung function and in whether this association varies by smoking status has implications for further research.  (+info)

Selenium-dependent metabolism of purines: A selenium-dependent purine hydroxylase and xanthine dehydrogenase were purified from Clostridium purinolyticum and characterized. (59/2336)

During purification of the selenium-dependent xanthine dehydrogenase (XDH) from Clostridium purinolyticum, another hydroxylase was uncovered that also contained selenium and exhibited similar spectral properties. This enzyme was purified to homogeneity. It uses purine, 2OH-purine, and hypoxanthine as substrates, and based on its substrate specificity, this selenoenzyme is termed purine hydroxylase (PH). The product of hydroxylation of purine by PH is xanthine. A concomitant release of selenium from the enzyme and loss of catalytic activity on treatment with cyanide indicates that selenium is essential for PH activity. Selenium-dependent XDH, also purified from C. purinolyticum, was found to be insensitive to oxygen during purification and to use both potassium ferricyanide and 2,6-dichloroindophenol as electron acceptors. Selenium is required for the xanthine-dependent reduction of 2, 6-dichloroindophenol by XDH. Kinetic analyses of both enzymes revealed that xanthine is the preferred substrate for XDH and purine and hypoxanthine are preferred by PH. This characterization of these selenium-requiring hydroxylases involved in the interconversion of purines describes an extension of the pathway for purine fermentation in the purinolytic clostridia.  (+info)

Dilated cardiomyopathy in dystrophic epidermolysis bullosa. (60/2336)

BACKGROUND: Dystrophic epidermolysis bullosa (DEB) is an uncommon genetic disorder of the skin and mucosae. In 1996, we reported the occurrence of lethal dilated cardiomyopathy (DCM) in two affected children. METHODS: In the past seven years we have routinely screened patients with severe DEB who have been under the care of this hospital by yearly clinical review, echocardiography, and quantification of plasma selenium and carnitine concentrations, as deficiency of these micronutrients is known to be associated with the development of DCM. RESULTS: Six of 61 children have developed DCM over the seven year period of this study, four of whom have not been previously reported, and three of whom have since died. We compared the concentrations of selenium and free and total carnitine in the children who developed DCM to concentrations in those with severe DEB who did not. The concentrations of free and total carnitine when first measured were significantly lower in the children with DCM, but the selenium concentrations were not. CONCLUSIONS: We now believe that DCM is a not infrequent complication of severe recessive DEB, and may be related in part to carnitine concentrations, though the exact mechanism remains unclear. We therefore recommend that patients with this condition should undergo regular cardiac review including echocardiography.  (+info)

Effect of dietary selenium and vitamin E on spermatogenic development in boars. (61/2336)

An experiment involving a total of 61 crossbred boars evaluated the effects of dietary Se and vitamin E on spermatogenic development at various stages of sexual development and the prostaglandin F2alpha (PGF2alpha) content in the seminal vesicle and prostate glands at 18 mo of age. The experiment from 5.4 to 9 mo of age was conducted as a 2 x 2 factorial in a randomized complete block design. Dietary Se at 0 or .5 ppm was the first factor and vitamin E at 0 or 220 IU/kg diet was the second. From 9 to 18 mo of age, a group of sexually active and inactive boars was a third factor. Treatment diets were fed from weaning (28 d of age) to the end of the experiment. Three boars per treatment group at 5.4 (105 kg BW), 6.2 (130 kg BW), and 9.0 (150 kg BW) mo of age were killed and the testes collected. From 9 to 18 mo of age, three boars from each dietary treatment group were used for semen collection, and another set of three to four boars from each treatment group remained sexually inactive. At 18 mo, both sets of boars were killed and their testes, prostates, and seminal vesicles were collected. The testis at each age was evaluated for sperm reserve numbers and germ and Sertoli cell populations. At 5.4 or 6.2 mo of age, testicular sperm reserves were not affected by dietary Se (P > .15), at 9.0 mo of age there was a trend for a higher (P < .10) number of sperm reserves, and by 18 mo of age the Se-fed boars had higher (P < .01) numbers of sperm reserves. Vitamin E had no effect (P > .15) on testicular sperm reserves at any age period. Boars fed dietary Se had a greater number of Sertoli cells (P < .01) and round spermatids (P < .01) at 6.2 mo of age, but by 18 mo of age the boars fed Se had more Sertoli cells (P < .05), more secondary spermatocytes (P < .01), and more round spermatids (P < .05). Vitamin E did not affect Sertoli or germ cell populations at the various ages. Boars at 18 mo of age had lower PGF2alpha concentrations in the prostate (P < .05) and seminal vesicles (P < .01) when vitamin E was fed, whereas Se had no effect. Sexually active boars had lower PGF2alpha concentrations in the seminal vesicles (P < .01) than sexually inactive boars, but there was no effect (P > .15) of sexual activity on the number of Sertoli cells, primary or secondary spermatocytes, or round spermatids. Our results indicate that Se has a role in establishing the number of boar spermatozoal reserves and Sertoli cells, whereas supplemental vitamin E did not affect these criteria.  (+info)

Effect of dietary selenium and vitamin E on the ultrastructure and ATP concentration of boar spermatozoa, and the efficacy of added sodium selenite in extended semen on sperm motility. (62/2336)

Three experiments evaluated the effects of dietary Se and vitamin E on the ultrastructure of spermatozoa, ATP concentration of spermatozoa, and the effects of adding sodium selenite to semen extenders on subsequent sperm motility. The experiment was a 2 x 2 arrangement of treatments in a randomized complete block design. A total of 10 mature boars were fed from weaning to 18 mo of age diets fortified with two levels of supplemental Se (0 or .5 ppm) or vitamin E (0 or 220 IU/kg diet). The nonfortified diets contained .06 ppm Se and 4.4 IU vitamin E/kg. In Exp. 1, the spermatozoa from all boars were examined by electron microscopy. Vitamin E had no effect on structural abnormalities in the spermatozoa. When the low-Se diet was fed the acrosome or nuclei of the spermatozoa was unaffected, but the mitochondria in the tail midpiece were more oval with wider gaps between organelles. The plasma membrane connection to the tail midpiece was not tightly bound as when boars were fed Se. Immature spermatozoa with cytoplasmic droplets were more numerous when boars were fed the low-Se diet, but the occurrence of midpiece abnormalities occurred in boars fed diets with or without Se or vitamin E. Our results suggest that Se may enhance spermatozoa maturation in the epididymis and may reduce the number of sperm with cytoplasmic droplets. In Exp. 2, the concentration of ATP in the spermatozoa was evaluated in the semen of all treatment boars. When the low-Se diet was fed, ATP concentration was lower (P < .01), whereas vitamin E had no effect on ATP concentration. Experiment 3 investigated the effect of diluting boar semen with a semen extender with sodium selenite added at 0, .3, .6, or .9 ppm Se. Three ejaculates from each boar were used to evaluate these effects on sperm motility to 48 h after dilution. Sperm motility declined (P < .01) when Se was added to the extender, and this decline was exacerbated as the concentration of added Se increased (P < .01). The added Se was demonstrated to be tightly adhered to the spermatozoa. Overall, these results suggest that low Se-diets fed to boars resulted in abnormal spermatozoal mitochondria, a lower ATP concentration in the spermatozoa, and a loose apposition of the plasma membrane to the helical coil of the tail midpiece, but no effect from inadequate vitamin E was demonstrated. Adding sodium selenite to the semen extender reduced sperm cell motility.  (+info)

Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. (63/2336)

Gases released from anaerobic wastewater treatment facilities contain considerable amounts of volatile methyl and hydride derivatives of metals and metalloids, such as arsine (AsH(3)), monomethylarsine, dimethylarsine, trimethylarsine, trimethylbismuth (TMBi), elemental mercury (Hg(0)), trimethylstibine, dimethyltellurium, and tetramethyltin. Most of these compounds could be shown to be produced by pure cultures of microorganisms which are representatives of the anaerobic sewage sludge microflora, i.e., methanogenic archaea (Methanobacterium formicicum, Methanosarcina barkeri, Methanobacterium thermoautotrophicum), sulfate-reducing bacteria (Desulfovibrio vulgaris, D. gigas), and a peptolytic bacterium (Clostridium collagenovorans). Additionally, dimethylselenium and dimethyldiselenium could be detected in the headspace of most of the pure cultures. This is the first report of the production of TMBi, stibine, monomethylstibine, and dimethylstibine by a pure culture of M. formicicum.  (+info)

Glutathione peroxidase-1 but not -4 is involved in the regulation of cellular 5-lipoxygenase activity in monocytic cells. (64/2336)

In contrast to neutrophils or B-lymphocytes, cells of the monocytic lineage like rat macrophages, human peripheral blood monocytes and Mono Mac 6 cells contain a strong inhibitor of 5-lipoxygenase (5-LO) activity, which scavenges hydroperoxides and inhibits 5-LO activity in broken-cell preparations in the absence of exogenously added thiols. Chromatographic purification of the inhibitor from the human monocytic cell line Mono Mac 6 and amino acid sequence analysis revealed that the inhibitory factor is glutathione peroxidase-1 (GPx-1). In contrast to the peroxidase activity of GPx-1, 5-LO inhibition by GPx-1 was supported by beta-mercaptoethanol and there was no absolute requirement for millimolar concentrations of glutathione or dithiothreitol. These cofactor characteristics suggest that both activities address distinct catalytic properties of GPx-1. 5-LO inhibition by GPx-1 was not due to direct GPx-5-LO protein-protein interactions, since GPx-1 did not bind to immobilized 5-LO. Interestingly, 5-LO derived from granulocytes was significantly more resistant against GPx-1 inhibition than B-lymphocytic 5-LO, which correlates with the respective cellular 5-LO activities. In summary, the data suggest that, in addition to previously reported phospholipid hydroperoxide glutathione peroxidase (GPx-4), GPx-1 is an efficient inhibitor of 5-LO even at low thiol concentrations, and is involved in the regulation of cellular 5-LO activity in various cell types.  (+info)