A 56-kDa selenium-binding protein participates in intra-Golgi protein transport. (1/33)

Transport of proteins between intracellular membrane compartments is a highly regulated process that depends on several cytosolic factors. By using the well characterized intra-Golgi cell-free transport assay, we purified from bovine brain cytosol a 56-kDa protein that shows a significant transport activity. Partial sequencing of four tryptic peptides obtained from the 56-kDa protein revealed its identity to a cytosolic protein previously characterized as a selenium-binding protein, SBP56. Recombinant SBP56 expressed in Escherichia coli exhibited transport activity when added to the cell-free intra-Golgi transport. Affinity purified anti-SBP56 polyclonal antibodies specifically inhibited intra-Golgi transport in vitro. Although SBP56 is predominantly localized in the cytosol, a significant amount is associated with membranes. Subcellular fractionation showed that this protein is peripherally associated with the Golgi membrane. The experiments presented in this study indicate that SBP56 participates in late stages of intra-Golgi protein transport.  (+info)

Lotus japonicus gene Ljsbp is highly conserved among plants and animals and encodes a homologue to the mammalian selenium-binding proteins. (2/33)

We have isolated and characterized a Lotus japonicus gene (Ljsbp) encoding a putative polypeptide with striking homology to the mammalian 56-kDa selenium-binding protein (SBP). cDNA clones homologous to LjSBP were also isolated from soybean, Medicago sativa, and Arabidopsis thaliana. Comparative expression studies in L japonicus and A. thaliana showed that sbp transcripts are present in various tissues and at different levels. Especially in L japonicus nodules and seedpods and A. thaliana siliques, sbp expression appears to be developmentally up-regulated. sbp Gene transcripts were localized by in situ hybridization in the infected cells and vascular bundles of young nodules, while in mature nodules, low levels of expression were only detected in the parenchymatous cells. Expression of sbp transcripts in young seedpods and siliques was clearly visible in vascular tissues and embryos, while in embryos, low levels of expression were detected in the root epidermis and the vascular bundles. Polyclonal antibodies raised against a truncated LjSBP recombinant protein recognized a polypeptide of about 60 kDa in nodule extracts. Immunohistochemical experiments showed that accumulation of LjSBP occurred in root hairs, in the root epidermis above the nodule primordium, in the phloem of the vasculature, and abundantly in the infected cells of young nodules. Irrespective of the presence of rhizobia, expression of SBP was also observed in root tips, where it was confined in the root epidermis and protophloem cells. We hypothesize that LjSBP may have more than one physiological role and can be implicated in controlling the oxidation/reduction status of target proteins, in vesicular Golgi transport, or both.  (+info)

Direct detection of potential selenium delivery proteins by using an Escherichia coli strain unable to incorporate selenium from selenite into proteins. (3/33)

Selenium can be metabolized for protein synthesis by two major pathways in vivo. In a specific pathway it can be inserted into polypeptide chains as the amino acid selenocysteine, as directed by the UGA codon. Alternatively, selenium can be substituted for sulfur to generate the free amino acids selenocysteine and selenomethionine, and these are incorporated nonspecifically into proteins in place of cysteine and methionine, respectively. A mutant strain of Escherichia coli was constructed that is deficient in utilization of inorganic selenium for both specific and nonspecific pathways of selenoprotein synthesis. Disruption of the cysK gene prevented synthesis of free cysteine and selenocysteine from inorganic S and Se precursors. Inactivation of the selD gene prevented synthesis of selenophosphate, the reactive selenium donor, required for the specific incorporation pathway. As expected, the double mutant strain, RL165 Delta selD, when grown anaerobically in LB + glucose medium containing (75)SeO(3)(2-), failed to synthesize selenium-dependent formate dehydrogenase H and seleno-tRNAs. However, it incorporated 24% as much selenium as the wild-type strain. Selenium in the deficient strain was bound to five different proteins. A 39-kDa species was identified as glyceraldehyde-3-phosphate dehydrogenase. It is possible that selenium was bound as a perselenide derivative to the reactive cysteine residue of this enzyme. A 28-kDa protein identified as deoxyribose phosphate aldolase also contained bound selenium. These (75)Se-labeled proteins may have alternate roles as selenium delivery proteins.  (+info)

Enhanced resistance to blast fungus and bacterial blight in transgenic rice constitutively expressing OsSBP, a rice homologue of mammalian selenium-binding proteins. (4/33)

The rice Oryza sativa selenium-binding protein homologue (OsSBP) gene encodes a homologue of mammalian selenium-binding proteins, and it has been isolated as one of the genes induced by treating a plant with a cerebroside elicitor from rice blast fungus. The possible role of OsSBP in plant defense was evaluated by using a transgenic approach. Plants overexpressing OsSBP showed enhanced resistance to a virulent strain of rice blast fungus as well as to rice bacterial blight. The expression of defense-related genes and the accumulation of phytoalexin after infection by rice blast fungus were accelerated in the OsSBP overexpressors. A higher level of H(2)O(2) accumulation and reduced activity of such scavenging enzymes as ascorbate peroxidase and catalase were seen when the OsSBP-overexpressing plants were treated with the protein phosphatase 1 inhibitor, calyculin A. These results suggest that the upregulation of OsSBP expression conferred enhanced tolerance to different pathogens, possibly by increasing plant sensitivity to endogenous defense responses. Additionally, the OsSBP protein might have a role in modulating the defense mechanism to biotic stress in rice.  (+info)

Enhancement of acetaminophen cytotoxicity in selenium-binding protein-overexpressed COS-1 cells. (5/33)

The role of selenium-binding protein (SeBP), which has a high ability to associate with acetaminophen (AAP), on the cytotoxicity of AAP was studied. To clarify this issue, we examined the cytotoxic effect of AAP using COS cells stably expressing SeBP. Expression of SeBP enhanced the susceptibility of the cells to AAP-induced cytotoxicity. Several clones of SeBP-expressed COS cells were obtained, and they exhibited different degrees of susceptibility toward AAP. It was found that there is an inverse correlation between the expression level and the cell viability (r=-0.872). On the other hand, no increase in toxicity was observed in the SeBP-expressed cells treated with N-acetyl-p-quinone imine (NAPQI), which is an active metabolite of AAP. These results show that SeBP is an important factor in AAP hepatotoxicity. Moreover, our data suggest that the toxic mechanism of AAP differs from that of NAPQI.  (+info)

Selenium-binding protein-1 in smooth muscle cells is downregulated in a rhesus monkey model of chronic allograft nephropathy. (6/33)

Treating patients with kidney failure by organ transplantation has been extraordinarily successful. Although, current immunosuppressants have improved short-term allograft survival, most transplants are eventually lost due to chronic allograft nephropathy (CAN). The molecular mechanisms underlying CAN are poorly understood. Smooth muscle cells (SMC) play a major role in the pathogenesis of CAN by contributing to the thickening of the intima and narrowing of the lumen of blood vessels. We show that selenium-binding protein-1 (SBP-1), a protein implicated in protein trafficking and secretion, is localized primarily to SMC in vivo. SBP-1 was heavily tyrosine-phosphorylated in vivo. Remarkably, SBP-1 was absent or strongly downregulated in vascular SMC in monkey kidney allografts with CAN. In contrast, the SMC alpha-actin was strongly expressed in the vascular SMC of the same allografts, indicating that the decrease in SBP-1 was not due to a global decrease in SMC proteins. Out of four growth factors implicated in the pathogenesis of CAN, only TGF-beta blocked the expression of SBP-1; thus, TGF-beta could regulate the expression of SBP-1 in CAN. These results show that SBP-1 localizes primarily to SMC in vivo and implicate this phosphoprotein in the effects of TGF-beta on SMC and in the process of CAN.  (+info)

Characterization of potential selenium-binding proteins in the selenophosphate synthetase system. (7/33)

Selenophosphate, an activated form of selenium that can serve as a selenium donor, is generated by the selD gene product, selenophosphate synthetase (SPS). Selenophosphate is required by several bacteria and by mammals for the specific synthesis of Secys-tRNA, the precursor of selenocysteine in selenoenzymes. Although free selenide can be used in vitro for synthesis of selenophosphate, the physiological system that donates selenium to SPS is incompletely characterized. To detect potential selenium-delivery proteins, two known sulfurtransferases and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12) were analyzed for ability to bind and transfer selenium. Rhodanese (EC 2.8.1.1) was shown to bind selenium tightly, with only part of the selenium being available as substrate for SPS in the presence of added reductant. 3-Mercaptopyruvate sulfurtransferase (3-MST; EC 2.8.1.2) and GAPDH also bound selenium supplied as selenodiglutathione formed from SeO3(2-) and glutathione. Selenium bound to 3-MST and GAPDH was released more readily than that from rhodanese and also was more available as a substrate for SPS. Although rhodanese retained tightly bound selenium under aerobic conditions, the protein gradually became insoluble, whereas GAPDH containing bound selenium was stable at neutral pH for a long period. These results indicate that 3-MST and GAPDH have more suitable potentials as a physiological selenium-delivery protein than rhodanese. In the presence of a selenium-binding protein, a low level of selenodiglutathione formed from SeO3(2-) and glutathione could effectively replace the high concentrations of selenide routinely used as substrate in the SPS in vitro assays.  (+info)

Methanococcus vannielii selenium-binding protein (SeBP): chemical reactivity of recombinant SeBP produced in Escherichia coli. (8/33)

A selenium-binding protein (SeBP) from Methanococcus vannielii was recently identified, and its gene was isolated and overexpressed in Escherichia coli [Self, W. T., Pierce, R. & Stadtman, T. C. (2004) IUBMB Life 56, 501-507]. SeBP and recombinant SeBP (rSeBP) migrated as approximately 42-kDa species on native gels and as approximately 33-kDa species on SDS gels. rSeBP consists of identical 8.8-kDa subunits, each containing a single cysteine residue. rSeBP isolated in the absence of reducing agents contained oxidized cysteine (89%) and very little bound selenium (0.05 eq or less per subunit). Complete reduction of the oxidized cysteine residues in rSeBP with Tris(2-carboxyethyl)phosphine required addition of a denaturant, such as 1 M guanidine-hydrochloride. With selenite as the selenium source and the isolated reduced protein as sole reductant, binding of one selenium per tetramer under anaerobic conditions required four cysteine thiol groups, one on each subunit. In the corresponding reaction, with reduced glutathione (GSH), equimolar amounts of selenodiglutathione (GSSeSG) and glutathione disulfide are formed from selenite and 4 GSH. At GSH-to-selenite ratios >4:1, conversion of GSSeSG to a perselenide derivative, GSSe(-), occurs. However, with the reduced rSeBP as sole electron donor in the reaction with selenite, further conversion of the R-SSeS-R product apparently did not occur. Prior alkylation of the cysteine thiol groups in reduced rSeBP prevented selenite reduction and selenium binding under comparable conditions.  (+info)