Damage-induced neuronal endopeptidase (DINE/ECEL) expression is regulated by leukemia inhibitory factor and deprivation of nerve growth factor in rat sensory ganglia after nerve injury. (25/284)

Damage-induced neuronal endopeptidase (DINE) is a novel metallopeptidase and is expressed in response to various neuronal injuries. The expression regulation of DINE mRNA in the dorsal root ganglia (DRGs) after sciatic nerve injury is examined. A substantial increase of DINE mRNA expression was observed in relatively small-sized DRG neurons after nerve injury. The expression was observed in isolectin B4-negative and partly TrkA-positive neurons, and the expression profile was fairly similar to that of the neuropeptide galanin. More than 80% of DINE mRNA-positive neurons simultaneously demonstrated galanin immunoreactivity after nerve injury. In cultured DRG, DINE mRNA expression was enhanced by leukemia inhibitory factor (LIF) but not by other growth factors and cytokines. LIF treatment to rat sciatic nerve induced DINE mRNA expression in DRG without nerve injury, and, conversely, the intranerve injection of anti-gp130 antibody after sciatic nerve injury significantly inhibited the upregulation of DINE mRNA in DRG. Furthermore, nerve growth factor (NGF) deprivation, which can induce galanin expression, also enhanced DINE mRNA expression in vitro and in vivo. Both LIF application and NGF deprivation additively enhanced DINE expression in vitro. These results suggest that DINE gene expression is regulated separately by both LIF and NGF deprivation, and this regulation pattern is similar to that of galanin gene expression. Because both DINE and galanin have a neuroprotective function, their simultaneous induction may provide more successful protection for injured sensory neurons.  (+info)

A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve. (26/284)

The neural crest gives rise to numerous cell types, including Schwann cells, neurons, and melanocytes. The extent to which adult neural crest-derived cells retain plasticity has not been tested previously. We report that cutting adult mouse sciatic nerve induces pigmentation around nerve fascicles, among muscle bundles, and in the hypodermis. Pigmented cells are derived from adult nerve, because pigmentation occurs even when nerve fragments are grafted into tyrosinase null albino mice. Pigmentation defects are pervasive in patients with neurofibromatosis type 1 (NF1). Mice hemizygous for Nf1 mutations show enhanced pigmentation after nerve lesion and occasionally form pigmented and unpigmented tumors. The Nf1 nerve and the Nf1 host environment both contribute to enhanced pigmentation. Grafted purified Nf1 mutant glial cells [S100(+)-p75NGFR(+)-GFAP(+)-EGFR(+) or S100(+)-p75NGFR(+)-GFAP(+)-EGFR(-)] mimic nerve-derived pigmentation. The NF1 protein, neurofibromin, is a Ras-GAP that acts downstream of a few defined receptor tyrosine kinases, including [beta-common (beta(c))] the shared common receptor for granulocyte and monocyte colony-stimulating factor, interleukin-3 (IL3), and IL5. Cytokines in the environment have the potential to suppress pigmentation as shown by nerve injury experiments in null mice; when is beta(c) absent or Nf1 is mutant, melanogenesis is increased. Thus, the adult nerve glial cell phenotype is maintained after nerve injury by response to cytokines, through neurofibromin.  (+info)

Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. (27/284)

The calcium channel alpha2delta-1 subunit is a structural subunit important for functional calcium channel assembly. In vitro studies have shown that this subunit is the binding site for gabapentin, an anticonvulsant that exerts antihyperalgesic effects by unknown mechanisms. Increased expression of this subunit in the spinal cord and dorsal root ganglia (DRG) has been suggested to play a role in enhanced nociceptive responses of spinal nerve-injured rats to innocuous mechanical stimulation (allodynia). To investigate whether a common mechanism underlies allodynic states derived from different etiologies, and if so, whether similar alpha2delta-1 subunit up-regulation correlates with these allodynic states, we compared DRG and spinal cord alpha2delta-1 subunit levels and gabapentin sensitivity in allodynic rats with mechanical nerve injuries (sciatic nerve chronic constriction injury, spinal nerve transection, or ligation), a metabolic disorder (diabetes), or chemical neuropathy (vincristine neurotoxicity). Our data indicated that even though allodynia occurred in all types of nerve injury investigated, DRG and/or spinal cord alpha2delta-1 subunit up-regulation and gabapentin sensitivity only coexisted in the mechanical and diabetic neuropathies. Thus, induction of the alpha2delta-1 subunit in the DRG and spinal cord is likely regulated by factors that are specific for individual neuropathies and may contribute to gabapentin-sensitive allodynia. However, the calcium channel alpha2delta-1 subunit is not the sole molecular change that uniformly characterizes the neuropathic pain states.  (+info)

Identification of genes that are downregulated in the absence of the POU domain transcription factor pou3f1 (Oct-6, Tst-1, SCIP) in sciatic nerve. (28/284)

Despite the importance of myelinating Schwann cells in health and disease, little is known about the genetic mechanisms underlying their development. The POU domain transcription factor pou3f1 (Tst-1, SCIP, Oct-6) is required for the normal differentiation of myelinating Schwann cells, but its precise role requires identification of the genes that it regulates. Here we report the isolation of six genes whose expression is reduced in the absence of pou3f1. Only one of these genes, the fatty acid transport protein P2, was known previously to be expressed in Schwann cells. The LIM domain proteins cysteine-rich protein-1 (CRP1) and CRP2 are expressed in sciatic nerve and induced by forskolin in cultured Schwann cells, but only CRP2 requires pou3f1 for normal expression. pou3f1 appears to require the claw paw gene product for activation of at least some of its downstream effector genes. Expression of the novel Schwann cell genes after nerve injury suggests that they are myelin related. One of the genes, tramdorin1, encodes a novel amino acid transport protein that is localized to paranodes and incisures. Our results suggest that pou3f1 functions to activate gene expression in the differentiation of myelinating Schwann cells.  (+info)

Intrathecal lidocaine reverses tactile allodynia caused by nerve injuries and potentiates the antiallodynic effect of the COX inhibitor ketorolac. (29/284)

BACKGROUND: Systemic lidocaine and other local anesthetics reduce hypersensitivity states induced by both acute inflammation and peripheral nerve injury in animals and produce analgesia in some patients with chronic pain. The mechanisms underlying the antiallodynic effect of systemic lidocaine are unclear, although most focus is on peripheral mechanisms. Central mechanisms, particularly at the spinal dorsal horn level, are less known. In this study, the authors aimed to determine whether intrathecal lidocaine has an antiallodynic effect on established mechanical allodynia in two well-characterized neuropathic pain rat models: partial sciatic nerve ligation (PSNL) and spinal nerve ligation (SNL). METHODS: Lidocaine (100-300 micro g) was intrathecally injected in PSNL and SNL rats. The withdrawal threshold of both hind paws in response to mechanical stimulation was measured using a series of calibrated von Frey filaments. RESULTS: This single injection reduced ongoing tactile allodynia in PSNL and SNL rats. The antiallodynic effect of intrathecal lidocaine lasted longer in PSNL (> 3 days) than in SNL rats (< 3 days). Intraperitoneal lidocaine (300 micro g) had no effect on tactile allodynia in PSNL rats. In SNL rats, prior intrathecal lidocaine (200 and 300 micro g) potentiated the antiallodynic effect of intrathecal ketorolac, a nonselective cyclooxygenase inhibitor. Intrathecal ketorolac alone had no antiallodynic effect on SNL rats. However, prior intrathecal lidocaine (100 micro g) failed to potentiate the antiallodynic effect of intrathecal ketorolac. CONCLUSION: The authors' data suggest that intrathecal lidocaine possibly suppressed the hyperexcitability of the dorsal horn neurons and likely interacted with eicosanoid systems in the spinal dorsal horn.  (+info)

Absence of thermal hyperalgesia in serotonin transporter-deficient mice. (30/284)

Antidepressants in the treatment of neuropathic pain are thought to partially exert their effect by inhibition of serotonin (5-HT) reuptake and thus activation of central antinociceptive pathways. Mice deficient for the 5-HT transporter (5-HTT-/- mice) are regarded as a model of lifelong treatment with a serotonin reuptake inhibitor. Here we investigated 5-HTT-/- mice and compared their pain-related behavior after a unilateral chronic constrictive sciatic nerve injury (CCI) with that of wild-type littermates. Wild-type mice reproducibly developed ipsilateral thermal hyperalgesia and mechanical allodynia after CCI. 5-HTT-/- mice did not develop thermal hyperalgesia, but showed bilateral mechanical allodynia after the nerve injury. 5-HT levels as measured with HPLC increased after CCI in the injured nerve in both genotypes and decreased in the lumbar spinal cord in wild-type mice. 5-HTT-/- mice had significantly lower 5-HT concentrations than wild-type mice in all tissues investigated. Thus, in 5-HTT-/- mice, reduced 5-HT levels in the injured peripheral nerves correlate with diminished behavioral signs of thermal hyperalgesia, a pain-related symptom caused by peripheral sensitization. In contrast, bilateral mechanical allodynia, a centrally mediated phenomenon, was associated with decreased spinal 5-HT concentrations in 5-HTT-/- mice and may possibly be caused by a lack of spinal inhibition.  (+info)

Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. (31/284)

Mirror-image allodynia is a mysterious phenomenon that occurs in association with many clinical pain syndromes. Allodynia refers to pain in response to light touch/pressure stimuli, which normally are perceived as innocuous. Mirror-image allodynia arises from the healthy body region contralateral to the actual site of trauma/inflammation. Virtually nothing is known about the mechanisms underlying such pain. A recently developed animal model of inflammatory neuropathy reliably produces mirror-image allodynia, thus allowing this pain phenomenon to be analyzed. In this sciatic inflammatory neuropathy (SIN) model, decreased response threshold to tactile stimuli (mechanical allodynia) develops in rats after microinjection of immune activators around one healthy sciatic nerve at mid-thigh level. Low level immune activation produces unilateral allodynia ipsilateral to the site of sciatic inflammation; more intense immune activation produces bilateral (ipsilateral + mirror image) allodynia. The present studies demonstrate that both ipsilateral and mirror-image SIN-induced allodynias are (1) reversed by intrathecal (peri-spinal) delivery of fluorocitrate, a glial metabolic inhibitor; (2) prevented and reversed by intrathecal CNI-1493, an inhibitor of p38 mitogen-activated kinases implicated in proinflammatory cytokine production and signaling; and (3) prevented or reversed by intrathecal proinflammatory cytokine antagonists specific for interleukin-1, tumor necrosis factor, or interleukin-6. Reversal of ipsilateral and mirror-image allodynias was rapid and complete even when SIN was maintained constantly for 2 weeks before proinflammatory cytokine antagonist administration. These results provide the first evidence that ipsilateral and mirror-image inflammatory neuropathy pain are created both acutely and chronically through glial and proinflammatory cytokine actions.  (+info)

Inflammation induces ectopic mechanical sensitivity in axons of nociceptors innervating deep tissues. (32/284)

A variety of seemingly diverse pain syndromes are characterized by movement-induced pain radiating in the distribution of a peripheral nerve or nerve root. This could be explained by the induction of ectopic mechanical sensitivity in intact sensory axons. Here we show that inflammation led to mechanical sensitivity of the axons of a subset of mechanically sensitive primary sensory neurons. Dorsal root recordings were made from 194 mechanically sensitive neurons that innervated deep and cutaneous structures and had C, Adelta, and Aalphabeta conduction velocities. No axons of any category were mechanically sensitive in control experiments. However, the axons of neurons innervating deep structures and having C- or Adelta-conduction velocities became mechanically sensitive during the neuritis, and also exhibited an increased incidence of spontaneous discharge. The incidence of mechanical sensitivity followed a distinct time course. In some cases, paw withdrawal thresholds were obtained after neuritis induction. The time course of the resultant hypersensitivity was not directly related to the time course of the axonal mechanical sensitivity. Ectopic axonal mechanical sensitivity could explain some types of radiating, nerve-related pain coexisting with diseases of seemingly diverse etiologies.  (+info)