Identification of alg3 in the mushroom-forming fungus Schizophyllum commune and analysis of the Deltaalg3 knockout mutant. (73/125)

 (+info)

Domain structure and function of alpha-1,3-glucanase from Bacillus circulans KA-304, an enzyme essential for degrading basidiomycete cell walls. (74/125)

Bacillus circulans KA-304 alpha-1,3-glucanase (Agl-KA) includes an N-terminal discoidin domain (DS1), a carbohydrate binding module family 6 (CB6), threonine and proline repeats (TPs), a second discoidin domain (DS2), an uncharacterized conserved domain (UCD), and a C-terminal catalytic domain. Domain deletion enzymes lacking DS1, CB6, and DS2 exhibited lower alpha-1,3-glucan-hydrolyzing and -binding activities than the wild type, Agl-KA. An alpha-1,3-glucan binding assay with fluorescent protein fusion proteins indicated that DS1, CB6, and DS2 bound to alpha-1,3-glucan and fungal cell walls, and that binding efficiency was increased by their combined action. In contrast, UCD did not exhibit any alpha-1,3-glucan-binding activity. A dramatic decrease in protoplast formation in the Schizophyllum commune mycelium was observed given only a DS1 deletion. An Agl-KA with deletion DS1, CB6, and DS2 produced no protoplasts. These results indicate that the combined actions of DS1, CB6, and DS2 contributed to increased cell-wall binding and were indispensable for efficient Agl-KA cell-wall degradation.  (+info)

Molecular characterization and in vitro antifungal susceptibility profile of Schizophyllum commune, an emerging basidiomycete in bronchopulmonary mycoses. (75/125)

 (+info)

A central role for Ras1 in morphogenesis of the basidiomycete Schizophyllum commune. (76/125)

 (+info)

Essential carboxy groups in xylanase A. (77/125)

An endo-1,4-beta-xylanase of Schizophyllum commune was purified to homogeneity through a modified procedure employing DEAE-Sepharose CL-6B and gel-filtration chromatography on Sephadex G-50. The role of carboxy groups in the catalytic mechanism was delineated through chemical modification studies. The water-soluble carbodi-imide 1-(4-azonia-4,4-dimethylpentyl)-3-ethylcarbodi-imide iodide (EAC) inactivated the xylanase rapidly and completely in a pseudo-first-order process. Other carbodi-imides and Woodward's Reagent K were less effective in decreasing enzymic activity. Significant protection of the enzyme against EAC inactivation was provided by a mixture of neutral xylo-oligomers. The pH-dependence of the EAC inactivation revealed the presence of a critical ionizable group with a pKa value of 6.6 in the active site of the xylanase. Treatment of the enzyme with diethyl pyrocarbonate resulted in modification of all three histidine residues in the enzyme with 100% retention of original enzymic activity. Titration of the enzyme with 5,5-dithiobis-(2-nitrobenzoic acid) and treatment with iodoacetimide and p-chloromercuribenzoate indicated the absence of free/reactive thiol groups. Reaction of the xylanase with tetranitromethane did not result in a significant activity loss as a result of modification of tyrosine residues.  (+info)

Production, characterization, and partial amino acid sequence of xylanase A from Schizophyllum commune. (78/125)

Xylanase A, one of several extracellular xylanases produced by Schizophyllum commune strain Delmar when grown in submerged culture with spruce sawdust as carbon source, was purified 43-fold in 25% yield with respect to total xylanase activity. Although some polysaccharide was strongly bound to the purified enzyme, the complex could be dissociated by sodium dodecyl sulfate and appeared homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the protein, calculated from the electrophoretic mobility, was 33,000. The molecular activity of the purified xylanase A, determined with soluble larch xylan as substrate, was 1.4 X 10(5) min-1, with xylobiose and xylose as the major products. The enzyme had a pH optimum of 5.0 and a temperature optimum of 55 degrees C in 10-min assays. The acid hydrolysate of xylanase A was rich in aspartic acid and aromatic amino acids. The sequence of 27 residues at the amino terminus showed no homology with known sequences of other proteins.  (+info)

Identification of the covalently bound flavin prosthetic group of cholesterol oxidase. (79/125)

Highly purified preparations of cholesterol oxidase from Schizophyllum commune contain a covalently bound flavin component. A flavin peptide has been obtained by digestion with trypsin-chymotrypsin and purification on a column of phosphocellulose. Digestion with nucleotide pyrophosphatase results in increased fluorescence at pH 3.4 and release of 5'-adenylate, showing that the flavin is in the dinucleotide form. The absorption spectrum of the flavin peptide shows the hypsochromic shift of the second absorption band characteristic of 8 alpha-substituted flavins. The fluorescence at pH 7 is extensively quenched even in the mononucleotide form, with a pKa at pH 5.8 in the flavin peptide and at 5.05 following acid hydrolysis to the aminoacyl flavin level. This suggests that histidine is the amino acid substituted at the 8 alpha position of the flavin and that N(1) of the imidazole ring is the site of attachment. These data, the reduction of the flavin by borohydride, and comparison of the mobilities in high voltage electrophoresis at two pH values with N(1)- and N(3)-histidyl riboflavin and their 2',5'-anhydro forms shows that the prosthetic group of cholesterol oxidase is 8 alpha-[N(1)-histidyl]-FAD.  (+info)

Purification and some properties of cholesterol oxidase from Schizophyllum commune with covalently bound flavin. (80/125)

Cholesterol oxidase [EC 1.1.3.6] from Schizophyllum commune was purified by an affinity chromatography using 3-O-succinylcholesterol-ethylenediamine (3-cholesteryl-3-[2-aminoethylamido]propionate) Sepharose gels. The resulting preparation was homogeneous as judged by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 53,000 by SDS-gel electrophoresis and 46,000 by sedimentation equilibrium. The enzyme contained 483 amino acid residues as calculated on the basis of the molecular weight of 53,000. The enzyme consumed 60 mumol of O2/min per mg of protein with 1.3 mM cholesterol at 37 degrees C. The enzyme showed the highest activity with cholesterol; 3 beta-hydroxysteroids, such as dehydroepiandrosterone, pregnenolone, and lanosterol, were also oxidized at slower rates. Ergosterol was not oxidized by the enzyme. The Km for cholesterol was 0.33 mM and the optimal pH was 5.0. The enzyme is a flavoprotein which shows a visible absorption spectrum having peaks at 353 nm and 455 nm in 0.1 M acetate buffer, pH 4.0. The spectrum was characterized by the hypsochromic shift of the second absorption peak of the bound flavin. The bound flavin was reduced on anaerobic addition of a model substrate, dehydroepiandrosterone. Neither acid not heat treatment released the flavin coenzyme from the enzyme protein. The flavin of the enzyme could be easily released from the enzyme protein in acid-soluble form as flavin peptides when the enzyme protein was digested with trypsin plus chymotrypsin. The mobilities of the aminoacyl flavin after hydrolysis of the flavin peptides on thin layer chromatography and high voltage electrophoresis differed from those of free FAD, FMN, and riboflavin. A pKa value of 5.1 was obtained from pH-dependent fluorescence quenching process of the aminoacyl flavin. AMP was detected by hydrolysis of the flavin peptides with nucleotide pyrophosphatase. The results indicate strongly that cholesterol oxidase from Schizophyllum commune contains FAD as the prothetic group, which is covalently linked to the enzyme protein. The properties of the bound FAD were comparable to those of N (1)-histidyl FAD.  (+info)