The p47(phox-/-) mouse model of chronic granulomatous disease has normal granuloma formation and cytokine responses to Mycobacterium avium and Schistosoma mansoni eggs. (1/1591)

Chronic granulomatous disease (CGD) is a genetic disorder of NADPH oxidase in which phagocytes are defective in generating reactive oxidants. CGD patients suffer from recurrent infections and exuberant and persistent tissue granuloma formation. We hypothesized that abnormal granulomata in CGD may result from aberrant T-cell-mediated cytokine responses. To assess Th-1-type cytokine responses and granulomata, we challenged p47(phox-/-) and wild-type mice with avirulent (SmD) or virulent (SmT) variants of Mycobacterium avium 2-151. To assess Th-2-type cytokine responses and granulomata, we used Schistosoma mansoni eggs (SME). Mononuclear cells were harvested, and cytokine responses were determined by enzyme-linked immunosorbent assay or reverse transcriptase PCR. Following SmD or SmT challenge, splenocytes from p47(phox-/-) and wild-type mice generated similar polar Th-1 responses (increased levels of gamma interferon and basal levels of interleukin 4 [IL-4] and IL-5). By 8 weeks after SmT challenge, exuberant splenic granulomata developed in p47(phox-/-) and wild-type mice. After SME challenge, thoracic lymph node mononuclear cells from p47(phox-/-) and wild-type mice generated similar mixed Th-1 and Th-2 cytokine responses to SME antigen and concanavalin A. Peak lung granuloma sizes and rates of regression were similar in p47(phox-/-) and wild-type mice. These results suggest that exuberant granulomatous inflammation in CGD is probably not the result of skewing of T-cell responses toward the Th-1 or Th-2 pole. Appropriate regression of established tissue granulomata in p47(phox-/-) mice challenged with SME suggests that abnormal granuloma formation in CGD is stimulus dependent and is not an invariant feature of the disease.  (+info)

A novel 62-kilodalton egg antigen from Schistosoma mansoni induces a potent CD4(+) T helper cell response in the C57BL/6 mouse. (2/1591)

In infection with Schistosoma mansoni, hepatic granuloma formation is mediated by CD4(+) T helper (Th) cells sensitized to schistosomal egg antigens. There is considerable variation among infected individuals with respect to both severity of disease and the T-cell response to egg antigens. In the BL/6 mouse, the egg granulomas are relatively small and the relevant sensitizing egg antigens are largely unknown. We investigated the CD4(+) Th cell response of infected BL/6 mice to egg antigens fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and found a prominent lymphoproliferative response to be directed against a 62-kDa component. With the aid of a specific T-cell hybridoma, 4E6, the 62-kDa antigen was isolated; following partial digestion with endoproteinase Glu-C, an internal amino acid sequence was found to be identical with one present in the enzyme phosphoenolpyruvate carboxykinase (PEPCK) of the organisms Caenorhabditis elegans and Treponema pallidum and to differ by one residue from PEPCK of various other species. In CD4(+) Th cells from 7.5- 8.5-week-infected BL/6 mice, the purified 62-kDa molecule elicited a potent proliferative response which, based on cytokine analysis, was of a mixed Th-1 and Th-2 type. Our results reveal a novel egg antigen of particular prominence in the BL/6 mouse and suggest that the immune response in schistosomiasis is a product of sensitization to egg antigens that may vary considerably in immunogenicity from strain to strain.  (+info)

Full results of the genome-wide scan which localises a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31-q33. (3/1591)

Three hundred million individuals are at risk of infection by schistosomes, and thousands die each year of severe hepatic disease. Previous studies have shown that the intensity of infection by Schistosoma mansoni in a Brazilian population is controlled by a major gene, denoted as SM1. We report here the full results of a genome-wide search that was performed on this population to localise SM1. Two hundred and forty-six microsatellites were used for the primary map, and only one region in 5q31-q33 provided significant evidence of linkage. SM1 was subsequently mapped to this region, which contains several genes encoding cytokines or cytokine receptors which are involved in protection against schistosomes. Three additional regions, 1p22.2, 7q36 and 21q22-22-qter, yielded promising, although not significant, lod-score values. These regions contain candidate genes encoding cytokines or molecules relevant to anti-schistosome immunity.  (+info)

Cytotoxicity of human and baboon mononuclear phagocytes against schistosomula in vitro: induction by immune complexes containing IgE and Schistosoma mansoni antigens. (4/1591)

Normal human blood monocytes, pre-incubated at 37 degrees C with sera from patients infected with Schistosoma mansoni, strongly adhered to S. mansoni schistosomula in vitro, whereas no significant adherence was induced by sera from uninfected individuals. Comparable adherence occurred with normal baboon blood monocytes or peritoneal macrophages when these cells were incubated with sera from S. mansoni-infected baboons. Adherence of macrophages to schistosomula was associated with damage to the larvae, as estimated by a 51Cr release technique. Neither adherence nor cytotoxicity was induced by pre-incubation of the schistosomula, instead of the monocytes, with immune serum. The relevant factor in immune serum was heat-labile, but was not a complement component. Absorption and ultracentrifugation experiments showed that immune complexes, containing S. mansoni-specific IgE antibody and soluble parasite antigens, produced monocyte or macrophage adherence and cytotoxicity. Similar observations have been reported previously in the rat model. Since the production of large amounts of IgE is a predominant feature of schistosome infections in man and experimental animals, it is possible that this new mode of mononuclear phagocyte activation could act as an immune effector mechanism against S. mansoni.  (+info)

T1/ST2 expression is enhanced on CD4+ T cells from schistosome egg-induced granulomas: analysis of Th cell cytokine coexpression ex vivo. (5/1591)

Th cells are categorized into subsets based on the cytokine production of in vitro-differentiated Th populations. For in vivo-differentiated Th subsets, little is known about the heterogeneity of cytokine production in single cells. We recently described a molecule, T1/ST2, that is preferentially expressed on the surface of Th2 cells. Here we combined high-gradient magnetic cell separation with four-color single-cell cytometry to analyze simultaneously three intracellular cytokines and T1/ST2 surface expression on CD4+ cells from lungs containing granulomas induced by Schistosoma mansoni eggs. T1/ST2 was highly up-regulated on CD4+ T cells from hepatic granulomas and granulomatous lungs. T1/ST2+ cells from granulomatous lungs preferentially produced type 2 cytokines ex vivo. In the total CD4+ population, coexpression of type 1 and type 2 cytokines occurred frequently. However, such coproduction was drastically reduced in T1/ST2+ cells compared with T1/ST2- cells. Coexpression of type 1 and type 2 cytokines was also rare in cells simultaneously producing two cytokines of one type. These findings indicate that individual CD4+ T cells in vivo have different levels of commitment to a certain Th phenotype. Coexpression of two type 2 cytokines or production of one type 2 cytokine together with surface expression of T1/ST2 indicate advanced commitment to the Th2 phenotype.  (+info)

Tolerization of mice to Schistosoma mansoni egg antigens causes elevated type 1 and diminished type 2 cytokine responses and increased mortality in acute infection. (6/1591)

The granuloma that surrounds the Schistosoma mansoni egg is the cause of pathology in murine schistosomiasis, and its formation is driven by egg Ag-stimulated type 1 and type 2 cytokines. To determine the role of egg-driven immune responses during schistosome infection we rendered CBA/Ca mice unresponsive to schistosome eggs by combined cyclophosphamide treatment and thymectomy. In the early acute stages of schistosome infection, egg-tolerized mice suffered high mortalities. Granuloma size and deposition of collagen in the liver were significantly reduced in egg-tolerized mice. Similarly, limited granuloma responses were detected in the intestines of these mice, and this was associated with a >90% reduction in egg excretion. Histologically, egg-tolerized mice had exacerbated hepatocyte damage, with extensive microvesicular steatosis. Elevated plasma transaminase levels confirmed the damage to hepatocytes. Infected egg-tolerized mice had impaired proliferation responses to egg Ag but intact responses to worm Ag. Tolerized mice had diminished Ab responses to egg Ag and had a type 1 cytokine isotype pattern to worm Ag, with elevated IgG2a and diminished IgG1 and IgE. Egg-tolerized mice failed to down-regulate type 1 cytokines that are normally elicited during early schistosome infection. Hepatic granuloma cells from egg-tolerized mice were also type 1 cytokine dominated, with elevated frequencies of Tc1/Th1 and reduced Tc2/Th2 cells. This study demonstrates that mice tolerized to schistosome eggs have elevated type 1 cytokine responses with diminished type 2 responses and reduced anti-egg Ab during schistosome infection, and these effects are detrimental to the host.  (+info)

Continuous in vitro propagation and differentiation of cultures of the intramolluscan stages of the human parasite Schistosoma mansoni. (7/1591)

The metazoan parasitic blood flukes, Schistosoma spp., infect over 200 million people worldwide and cause extensive human morbidity and mortality. Research strategies for development of anti-schistosomal agents are impeded by the organism's complex molluscan-mammalian life cycle, which limits experimental approaches and availability of material. We derived long-term continuously proliferative cultures of Schistosoma mansoni sporocysts capable of generating cercariae in vitro. Cultured organisms retained the ability to parasitize the host, and they exhibited developmental regulation of candidate stage-specific genes in the host-free culture system. Evidence for expression of a reverse transcriptase also was found in the cultured organisms, pointing to this activity as a possible mechanistic contributor to the dynamic relationship between the parasite and its hosts. Continuous in vitro propagation of the asexual sporocyst stage allows isolation of clonally derived parasite populations and provides a means to study schistosomal molecular genetics, metabolism, and evasion of host defenses.  (+info)

Egg laying is delayed but worm fecundity is normal in SCID mice infected with Schistosoma japonicum and S. mansoni with or without recombinant tumor necrosis factor alpha treatment. (8/1591)

Mice with severe combined immunodeficiency (SCID mice) lack functional B and T cells. Egg laying by Schistosoma mansoni and S. japonicum was delayed in SCID mice, but in a matter of weeks worm fecundity was equivalent to that in intact mice. SCID mice formed smaller hepatic granulomas and showed less fibrosis than did intact mice. The reduction in egg-associated pathology in SCID mice correlated with marked reductions in interleukin-4 (IL-4), IL-5, IL-13, and gamma interferon mRNA expression in the liver. S. mansoni infections were frequently lethal for SCID mice infected for more than 9 weeks, while S. japonicum-infected SCID mice died at the same rate as infected intact mice. We were unable to affect hepatic granuloma formation or egg laying by worms in SCID mice by administration of recombinant murine tumor necrosis factor alpha (TNF-alpha). In fact, SCID and BALB/c mice appeared to express nearly equivalent levels of TNF-alpha mRNA in their granulomatous tissues, suggesting that there is little or no deficit in TNF-alpha expression in infected SCID mice. The data indicate that TNF-alpha may be in large part derived from a non-T-cell source. Together, these findings provide little evidence that TNF-alpha alone can reconstitute early fecundity, granuloma formation, or hepatic fibrosis in schistosome-infected SCID mice.  (+info)