Cicatricial fibromatosis mimics metastatic medulloblastoma. (1/535)

Cicatricial fibromatoses usually occur in the anterior abdominal wall or in the extremities, but rarely in the scalp or the soft tissues of the neck. We report a case of desmoid fibromatosis that developed in a 15-year-old boy 8 months after surgery for cerebellar medulloblastoma.  (+info)

A new technique of surface anatomy MR scanning of the brain: its application to scalp incision planning. (2/535)

BACKGROUND AND PURPOSE: Surface anatomy scanning (SAS) is an established technique for demonstrating the brain's surface. We describe our experience in applying SAS with superposition of MR venograms to preoperative scalp incision planning. METHODS: In 16 patients, scalp incision planning was done by placing a water-filled plastic tube at the intended incision site when we performed SAS using half-Fourier single-shot fast spin-echo sequences. Two-dimensional phase-contrast MR angiograms were obtained to demonstrate the cortical veins and then superimposed upon the SAS images. The added images were compared with surgical findings using a four-point grading scale (0 to 3, poor to excellent). RESULTS: In each case, neurosurgeons could easily reach the lesion. Surgical findings correlated well with MR angiogram-added SAS images, with an average score of 2.56. CONCLUSION: Our simple technique is a useful means of preoperatively determining brain surface anatomy and can be used to plan a scalp incision site.  (+info)

Focal ictal direct current shifts in human epilepsy as studied by subdural and scalp recording. (3/535)

In order to clarify further the characteristics of ictal direct current (DC) shifts in human epilepsy, we investigated them by subdural and scalp recording in six and three patients, respectively, both having mainly neocortical lobe epilepsy (five with frontal lobe epilepsy, two with parietal lobe epilepsy and two with temporal lobe epilepsy). By using subdural electrodes made of platinum, ictal DC shifts were observed in 85% of all the recorded seizures (89 seizures) among the six patients, and they were localized to just one or two electrodes at which the conventional initial ictal EEG change was also observed. They were closely accompanied by the electrodecremental pattern in all patients except for one in whom 1 Hz rhythmic activity was superimposed on clear negative slow shifts. Seizure control after resection of the cortex, including the area showing DC shifts, was favourable irrespective of histological diagnosis. Scalp-recorded ictal slow shifts were observed in 23% of all the recorded seizures (60 seizures) among the three patients. They were, like the subdurally recorded ones, mainly surface-negative in polarity, closely related to the electrodecremental pattern and consistent in their location. It seems that scalp-recorded DC shifts were detected particularly when seizures were clinically intense, while no slow shifts were observed in small seizures. It is concluded that at least subdurally recorded ictal slow shifts are clinically useful before epilepsy surgery to delineate more specifically an epileptogenic area as well as to further confirm the conventional initial ictal EEG change, and that scalp-recorded ictal slow shifts also have high specificity although their low sensitivity is to be taken into account.  (+info)

Generation of scalp discharges in temporal lobe epilepsy as suggested by intraoperative electrocorticographic recordings. (4/535)

OBJECTIVES: To study the variability, topography, polarity, duration, and incidence of interictal epileptiform discharges (EDs) in the scalp EEG and electrocorticogram (ECoG) from 16 patients with temporal lobe epilepsy who underwent surgical treatment. METHODS: Preoperative scalp EEGs during quinalbarbitone induced sleep were compared with preresection ECoGs obtained under general anaesthesia. The analysis was based on the initial ECoG record obtained before activation by intravenous thiopentone, and the EEG during stages I and II of sleep. RESULTS: On the scalp, 15 patients had a single discharge pattern, spikes were predominantly negative, EDs were of largest amplitude at the anterior temporal electrode in 13 patients and mean discharge incidence was 4.0 (SD 4.2) discharges/min. In ECoG recordings, nine patients had two independent ECoG patterns, the polarity of spikes was negative, positive-negative, or positive, the site of maximal amplitude varied greatly between subjects, discharge incidence was 7.3 (SD 3.9) discharges/min. There was no relation between the topography of the largest spikes on the scalp and in the ECoG. In 14 patients, scalp spikes showed statistically significant longer duration on the scalp than in the ECoG. In seven patients who had frequent widespread ECoG discharges, averaging spikes across ECoG channels generated spiky patterns of duration similar to that of scalp spikes. CONCLUSION: It seems that, in temporal lobe epilepsy, scalp discharges originate from widespread ECoG discharges and tend to produce a stereotyped pattern on the scalp with largest amplitudes at the anterior temporal electrodes. This is probably due to local anatomical peculiarities in the brain coverings, such as skull discontinuities, rather than to the location of neuronal generators within the temporal lobe. Due to spatiotemporal averaging, widespread cortical discharges which become asynchronous during propagation appear with increased duration and blunted waveform in the EEG, whereas sharply localised phenomena such as positive focal spikes are not recorded from the scalp.  (+info)

Outcomes of irradiated polyglactin 910 Vicryl Rapide fast-absorbing suture in oral and scalp wounds. (5/535)

BACKGROUND: This study evaluated the outcome of wounds closed with irradiated polyglactin 910 (IRPG) Vicryl Rapide (Ethicon, Somerville, N.J.). METHOD: Seventy-one patients with 80 oral wounds and 42 patients with 42 scalp wounds closed with IRPG were evaluated on the day of surgery, then one, seven, 14, 28 and 90 days following surgery. The incidence of inflammation, suppuration and hypertrophic scarring was recorded, along with the timing of spontaneous suture disappearance. This suture material was compared with polytetrafluoroethylene (PTFE) sutures used in dental implant patients, traditional polyglycolic acid (PGLA) sutures used in osteotomy patients and skin staples used in patients with scalp wounds. RESULTS: In the group with intraoral wounds, there were two cases of suppuration with no inflammatory reactions or hypertrophic scarring when IRPG sutures were used, compared to three cases of suppuration with the traditional PGLA sutures. In the group with scalp wounds, there was no suppuration or hypertrophic scarring with IRPG sutures and one inflammatory reaction with skin staples. IRPG sutures never required removal, while all staples, PGLA and PTFE sutures eventually required separate removal. CONCLUSION: Irradiated polyglactin 910 Vicryl Rapide is a useful suture material with both intra- and extraoral applications in the pediatric and adult populations.  (+info)

Interhemispheric asymmetries in the perception of unimanual and bimanual cutaneous stimuli. A study using transcranial magnetic stimulation. (6/535)

Previous studies have shown that transcranial magnetic stimulation (TMS) of the sensorimotor cortex can induce a suppression of cutaneous perception from the fingers of the contralateral hand. In this work, 17 normal subjects were submitted to focal TMS of frontal and parietal scalp sites of each hemisphere. TMS was delivered at two interstimulus intervals (20 and 40 ms) following a cutaneous electrical stimulation of the first, third and fifth digits of either hand or both hands near the subjective threshold of perception. The aim of our study was to investigate whether TMS could detect an asymmetrical hemispheric specialization in the sensory perception of unimanual and bimanual, ipsilateral and contralateral sensory stimuli. At each interpulse interval, the right parietal cortex was significantly more sensitive to TMS interference with stimulus detection for both contralateral and ipsilateral stimuli compared with the left parietal cortex. These effects were mainly evident during bimanual discrimination tasks. Our results are indicative of an interhemispheric difference in the detection of cutaneous sensation, showing right hemispheric prevalence in the perception of contralateral as well as of ipsilateral stimuli. They provide neurophysiological support in normal humans to the clinical evidence which indicates that right hemisphere lesions can indeed produce deficits in the perception of ipsilateral sensory stimuli.  (+info)

Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage. (7/535)

It has been demonstrated previously that transcranial magnetic stimulation (TMS) of the sensorimotor cortex can induce transient suppression of the perception of cutaneous near-threshold stimuli from fingers of the contralateral hand in normal individuals. One explanation accounting for deficits in the exploration of contralateral space following a unilateral hemispheric lesion refers to a loss of the normal interhemispheric balance, with a resultant hyperactivation of the unaffected hemisphere due to the release of reciprocal inhibition by the affected one. In order to verify this hypothesis, we investigated the effects of a TMS-induced transient dysfunction of the normal hemisphere upon contralateral tactile extinctions in two groups: (i) 14 right brain-damaged patients and (ii) 14 left brain-damaged control patients. Single-pulse TMS was delivered to frontal and parietal scalp sites of the unaffected hemisphere after an interval of 40 ms from an electrical unimanual or bimanual digit stimulation. In right brain-damaged patients, left frontal TMS significantly reduced the rate of contralateral extinctions compared with controls. After left parietal TMS, the number of extinctions was comparable to the baseline. This pattern of increased sensitivity to cutaneous stimulation ipsilateral to TMS was not observed in left brain-damaged control patients. In this group, right hemisphere TMS did not significantly alter the recognition of bimanual stimuli delivered to the space contralateral to the lesion. The suggestion is made that extinctions produced by right brain damage may be dependent on a breakdown in the balance of hemispheric rivalry in directing spatial attention to contralateral hemispace, so that the unaffected hemisphere generates an unopposed orienting response to the side of the lesion. The mechanisms whereby the left frontal TMS transiently ameliorates these deficits may involve stimulus-induced removal of a left frontal-right parietal transcallosal inhibitory flow, although interactions at subcortical levels cannot be excluded.  (+info)

Cerebral near infrared spectroscopy: emitter-detector separation must be increased. (8/535)

We have compared the effect of increasing optode separation (range 0.7-5.5 cm) on the sensitivity of near infrared spectroscopy (NIRS) to discrete reductions in scalp and cerebral oxygenation in 10 healthy men (mean age 32, range 26-39 yr) using multichannel NIRS. During cerebral oligaemia (a mean reduction in middle cerebral artery flow velocity of 47%) induced by a mean reduction in end-tidal PCO2 of 2.4 kPa, the decrease in oxyhaemoglobin detected by NIRS became significantly greater with increasing optode separation (P < 0.0001). In response to scalp hyperaemia induced by inflation and release of a pneumatic scalp tourniquet, increases in oxyhaemoglobin became significantly smaller with increasing optode separation (P < 0.0002). These results are consistent with theoretical models of the behaviour of NIR light in the adult head and support the concept of using multi-detector NIRS to separate intra- and extracranial NIR signal changes. However, the emitter-detector separation used by currently available cerebral oximeters is not large enough to provide optimal spatial resolution.  (+info)