Stretch-activated whole cell currents in adult rat cardiac myocytes. (41/1432)

Mechanoelectric transduction can initiate cardiac arrhythmias. To examine the origins of this effect at the cellular level, we made whole cell voltage-clamp recordings from acutely isolated rat ventricular myocytes under controlled strain. Longitudinal stretch elicited noninactivating inward cationic currents that increased the action potential duration. These stretch-activated currents could be blocked by 100 microM Gd(3+) but not by octanol. The current-voltage relationship was nearly linear, with a reversal potential of approximately -6 mV in normal Tyrode solution. Current density varied with sarcomere length (SL) according to I (pA/pF) = 8.3 - 5.0 SL (microm). Repeated attempts to record single channel currents from stretch-activated ion channels failed, in accord with the absence of such data from the literature. The inability to record single channel currents may be a result of channels being located on internal membranes such as the T tubules or, possibly, inactivation of the channels by the mechanics of patch formation.  (+info)

Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding. (42/1432)

To characterize the kinetics of cross-bridge attachment to actin during unloaded contraction (maximum velocity of filament sliding), ramp-shaped stretches with different stretch-velocities (2-40,000 nm per half-sarcomere per s) were applied to actively contracting skinned fibers of the rabbit psoas muscle. Apparent fiber stiffness observed during such stretches was plotted versus the speed of the imposed stretch (stiffness-speed relation) to derive the rate constants for cross-bridge dissociation from actin. The stiffness-speed relation obtained for unloaded shortening conditions was shifted by about two orders of magnitude to faster stretch velocities compared to isometric conditions and was almost identical to the stiffness-speed relation observed in the presence of MgATPgammaS at high Ca(2+) concentrations, i.e., under conditions where cross-bridges are weakly attached to the fully Ca(2+) activated thin filaments. These data together with several control experiments suggest that, in contrast to previous assumptions, most of the fiber stiffness observed during high-speed shortening results from weak cross-bridge attachment to actin. The fraction of strongly attached cross-bridges during unloaded shortening appears to be as low as some 1-5% of the fraction present during isometric contraction. This is about an order of magnitude less than previous estimates in which contribution of weak cross-bridge attachment to observed fiber stiffness was not considered. Our findings imply that 1) the interaction distance of strongly attached cross-bridges during high-speed shortening is well within the range consistent with conventional cross-bridge models, i.e., that no repetitive power strokes need to be assumed, and 2) that a significant part of the negative forces that limit the maximum speed of filament sliding might originate from weak cross-bridge interactions with actin.  (+info)

Form follows function: how muscle shape is regulated by work. (43/1432)

What determines the shape, size, and force output of cardiac and skeletal muscle? Chicago architect Louis Sullivan (1856-1924), father of the skyscraper, observed that "form follows function." This is as true for the structural elements of a striated muscle cell as it is for the architectural features of a building. Function is a critical evolutionary determinant, not form. To survive, the animal has evolved muscles with the capacity for dynamic responses to altered functional demand. For example, work against an increased load leads to increased mass and cross-sectional area (hypertrophy), which is directly proportional to an increased potential for force production. Thus a cell has the capacity to alter its shape as well as its volume in response to a need for altered force production. Muscle function relies primarily on an organized assembly of contractile and other sarcomeric proteins. From analysis of homogenized cells and molecular and biochemical assays, we have learned about transcription, translation, and posttranslational processes that underlie protein synthesis but still have done little in addressing the important questions of shape or regional cell growth. Skeletal muscles only grow in length as the bones grow; therefore, most studies of adult hypertrophy really only involve increased cross-sectional area. The heart chamber, however, can extend in both longitudinal and transverse directions, and cardiac cells can grow in length and width. We know little about the regulation of these directional processes that appear as a cell gets larger with hypertrophy or smaller with atrophy. This review gives a brief overview of the regulation of cell shape and the composition and aggregation of contractile proteins into filaments, the sarcomere, and myofibrils. We examine how mechanical activity regulates the turnover and exchange of contraction proteins. Finally, we suggest what kinds of experiments are needed to answer these fundamental questions about the regulation of muscle cell shape.  (+info)

Tension changes in the cat soleus muscle following slow stretch or shortening of the contracting muscle. (44/1432)

1. The permanent extra tension after a stretch and the deficit of tension after a shortening in the soleus muscle of the anaesthetised cat were measured using distributed nerve stimulation across five channels. At low rates of stimulation the optimum length for a contraction was several millimetres longer than that when higher rates of stimulation were used, so that movements applied over the same length range could be on the descending limb of the full activation curve but on the ascending limb of the submaximal activation curve. 2. The extra tension after stretch and the depression after shortening were present only near the peak and on the descending limb of the length-tension curve. Effects on final tension of changing the speed and amplitude of stretches or shortenings were found to be small. 3. Statistical analysis showed that variations in the tension excess or deficit due to changing stimulus rate could be entirely attributed to the effect of stimulus rate on the length-tension relation, as when length was expressed relative to optimum for each rate, stimulus rate was no longer a significant determinant of the tension excess or deficit. 4. The extra tension after stretch and the depression after shortening disappeared if stimulation was interrupted and tension briefly fell to zero. 5. These effects were explained in terms of a non-uniform distribution of sarcomere length changes at long muscle lengths. During stretch some sarcomeres are stretched to beyond overlap while others lengthen hardly at all. During shortening some sarcomeres shorten much further than others. 6. These mechanisms have important implications for exercise physiology and sports medicine.  (+info)

Hypertrophic defect unmasked by calcineurin expression in asymptomatic tropomodulin overexpressing transgenic mice. (45/1432)

OBJECTIVE: Dilation and hypertrophy often occur concurrently in cardiomyopathy, yet the interaction between these two functionally distinct conditions remains unknown. METHODS: Combinatorial effects of hypertrophy and dilation were investigated by cross-breeding of two cardiomyopathic transgenic mouse lines which develop either hypertrophy (calcineurin-mediated) or dilation (tropomodulin-mediated). RESULTS: Altering the intensity of signals driving hypertrophy and dilation in cross-bred litters resulted in novel disease phenotypes different from either parental line. Augmenting the calcineurin-dependent hypertrophic stimulus in tropomodulin overexpressing transgenics elevated heart:body weight ratios, increased ventricular wall thickness, and significantly accelerated mortality. These effects were evident in calcineurin cross-breeding to tropomodulin backgrounds of transgene homozygosity (severe dilation) or heterozygosity (mild dilation to asymptomatic). Molecular analyses indicated that tropomodulin and calcineurin signaling events in the first week after birth were critical for determination of disease outcome, substantiated by demonstration that temporary neonatal inhibition of tropomodulin expression prevents dilation. CONCLUSIONS: This study shows that postnatal timing of altered signaling in cardiomyopathic transgenic mouse models is a pivotal part of determining outcome. In addition, intensifying hypertrophic stimulation exacerbates dilated cardiomyopathy, supporting the concept of shared molecular signaling between hypertrophy and dilation.  (+info)

Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding. (46/1432)

Octamer stability and membrane binding of mitochondrial creatine kinase (MtCK) are important for proper functioning of the enzyme and were suggested as targets for regulatory mechanisms. A quantitative analysis of these properties, using fluorescence spectroscopy, gel filtration, and surface plasmon resonance, revealed substantial differences between the two types of MtCK isoenzymes, sarcomeric (sMtCK) and ubiquitous (uMtCK). As compared with human and chicken sMtCK, human uMtCK showed a 23-34 times slower octamer dissociation rate, a reduced reoctamerization rate and a superior octamer stability as deduced from the octamer/dimer ratios at thermodynamic equilibrium. Octamer stability of sMtCK increased with temperature up to 30 degrees C, indicating a substantial contribution of hydrophobic interactions, while it decreased in the case of uMtCK, indicating the presence of additional polar dimer/dimer interactions. These conclusions are consistent with the recently solved x-ray structure of the human uMtCK (Eder, M., Fritz-Wolf, K., Kabsch, W., Wallimann, T., and Schlattner, U. (2000) Proteins 39, 216-225). When binding to 16% cardiolipin membranes, sMtCK showed slightly faster on-rates and higher affinities than uMtCK. However, human uMtCK was able to recruit the highest number of binding sites on the vesicle surface. The observed divergence of ubiquitous and sarcomeric MtCK is discussed with respect to their molecular structures and the possible physiological implications.  (+info)

Force-velocity relationship and biochemical-to-mechanical energy conversion by the sarcomere. (47/1432)

The intracellular control mechanism leading to the well-known linear relationship between energy consumption by the sarcomere and the generated mechanical energy is analyzed here by coupling calcium kinetics with cross-bridge cycling. A key element in the control of the biochemical-to-mechanical energy conversion is the effect of filament sliding velocity on cross-bridge cycling. Our earlier studies have established the existence of a negative mechanical feedback mechanism whereby the rate of cross-bridge turnover from the strong, force-generating conformation to the weak, non-force-generating conformation is a linear function of the filament sliding velocity. This feedback allows the analytic derivation of the experimentally established Hill's equation for the force-velocity relationship. Moreover, it allows us to derive the transient length response to load clamps and the transient force response to sarcomere shortening at constant velocity. The results are in agreement with experimental studies. The mechanical feedback regulates the generated power, maintains the linear relationship between energy liberated by the actomyosin-ATPase and the generated mechanical energy, and determines the efficiency of biochemical-to-mechanical energy conversion. The mechanical feedback defines three elements of the mechanical energy: 1) external work done; 2) pseudopotential energy, required for cross-bridge recruitment; and 3) energy dissipation caused by the viscoelastic property of the cross bridge. The last two elements dissipate as heat.  (+info)

Myofibrillar disruption in hypocontractile myocardium showing perfusion-contraction matches and mismatches. (48/1432)

Chronically instrumented dogs underwent 2- or 5-h regional reductions in coronary flow that were followed, respectively, by balanced reductions in myocardial contraction and O(2) consumption ("hibernation") and persistently reduced contraction despite normal myocardial O(2) consumption ("stunning"). Previously unidentified myofibrillar disruption developed during flow reduction in both experimental models and persisted throughout the duration of reperfusion (2-24 h). Aberrant perinuclear aggregates that resembled thick filaments and stained positively with a monoclonal myosin antibody were present in 34 +/- 3.8% (SE) and 68 +/- 5.9% of "hibernating" and "stunned" subendocardial myocytes in areas subjected to flow reduction and in 16 +/- 2.5% and 44 +/- 7.4% of subendocardial myocytes in remote areas of the same ventricles. Areas of myofibrillar disruption also showed glycogen accretion and unusual heterochromatin clumping adjacent to the inner nuclear envelope. The degrees of flow reduction employed were sufficient to reduce regional myofibrillar creatine kinase activity by 25-35%, but troponin I degradation was not evident. The observed changes may reflect an early, possibly reversible, phase of the myofibrillar loss characteristic of hypocontractile myocardium in patients undergoing revascularization.  (+info)