Loading...
(1/271) Molecular mechanisms of resistance: free energy calculations of mutation effects on inhibitor binding to HIV-1 protease.

The changes in the inhibitor binding constants due to the mutation of isoleucine to valine at position 84 of HIV-1 protease are calculated using molecular dynamics simulations. The calculations are done for three potent inhibitors--KNI-272, L-735,524 (indinavir or MK-639), and Ro 31-8959 (saquinavir). The calculations agree with the experimental data both in terms of an overall trend and in the magnitude of the resulting free energy change. HIV-1 protease is a homodimer, so each mutation causes two changes in the enzyme. The decrease in the binding free energy from each mutated side chain differs among the three inhibitors and correlates well with the size of the cavities induced in the protein interior near the mutated residue. The cavities are created as a result of a mutation to a smaller side chain, but the cavities are less than would be predicted from the wild-type structures, indicating that there is significant relaxation to partially fill the cavities.  (+info)

(2/271) Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1.

The relative replicative fitness of human immunodeficiency virus type 1 (HIV-1) mutants selected by different protease inhibitors (PIs) in vivo was determined. Each mutant was compared to wild type (WT), NL4-3, in the absence of drugs by several methods, including clonal genotyping of cultures infected with two competing viral variants, kinetics of viral antigen production, and viral infectivity/virion particle ratios. A nelfinavir-selected protease D30N substitution substantially decreased replicative capacity relative to WT, while a saquinavir-selected L90M substitution moderately decreased fitness. The D30N mutant virus was also outcompeted by the L90M mutant in the absence of drugs. A major natural polymorphism of the HIV-1 protease, L63P, compensated well for the impairment of fitness caused by L90M but only slightly improved the fitness of D30N. Multiply substituted indinavir-selected mutants M46I/L63P/V82T/I84V and L10R/M46I/L63P/V82T/I84V were just as fit as WT. These results indicate that the mutations which are usually initially selected by nelfinavir and saquinavir, D30N and L90M, respectively, impair fitness. However, additional mutations may improve the replicative capacity of these and other drug-resistant mutants. Hypotheses based on the greater fitness impairment of the nelfinavir-selected D30N mutant are suggested to explain observations that prolonged responses to delayed salvage regimens, including alternate PIs, may be relatively common after nelfinavir failure.  (+info)

(3/271) Clinical resistance patterns and responses to two sequential protease inhibitor regimens in saquinavir and reverse transcriptase inhibitor-experienced persons.

The efficacy of sequential protease inhibitor therapy was studied in 16 human immunodeficiency virus (HIV) 1-infected persons in whom saquinavir with multiple nucleoside reverse transcriptase (RT) inhibitors (NRTI) had failed. Nelfinavir plus two NRTIs (new or continued) resulted in minimal (0.59 log RNA copies/mL) and transient (8 weeks) suppression of plasma HIV RNA levels. Rapid failure was surprisingly associated with baseline presence of protease gene mutation L90M (P=.04) in the absence of D30N and with RT mutations D67N (P<.01), K70R/S (P=.02), and K219Q/W/R/E (P<.01). Ten patients were subsequently switched to indinavir plus nevirapine and 2 NRTIs, resulting in a median 1.62 log reduction in plasma HIV RNA, with 3 patients maintaining 400 copies/mL for 24 weeks. These results suggest that nelfinavir may have limited utility after saquinavir failure, particularly without potent concomitant therapy. Combining an NRTI with a new protease inhibitor for rescue may improve response.  (+info)

(4/271) Novel four-drug salvage treatment regimens after failure of a human immunodeficiency virus type 1 protease inhibitor-containing regimen: antiviral activity and correlation of baseline phenotypic drug susceptibility with virologic outcome.

Twenty human immunodeficiency virus-infected patients experiencing virologic failure of an indinavir- or ritonavir-containing treatment regimen were evaluated in a prospective, open-label study. Subjects received nelfinavir, saquinavir, abacavir, and either another nucleoside analog (n=10) or nevirapine (n=10). Patients treated with the nevirapine-containing regimen experienced significantly greater virologic suppression at week 24 than those not treated with nevirapine (P=.04). Baseline phenotypic drug susceptibility was strongly correlated with outcome in both treatment arms. Subjects with baseline virus phenotypically sensitive to 2 or 3 drugs in the salvage regimen experienced significantly greater virus load suppression than those with baseline virus sensitive to 0 or 1 drug (median week-24 change=-2.24 log and -0.35 log, respectively; P=.01). In conclusion, non-nucleoside reverse transcriptase inhibitors may represent a potent drug in salvage therapy regimens after failure of an indinavir or ritonavir regimen. Phenotypic resistance testing may provide a useful tool for selecting more effective salvage regimens.  (+info)

(5/271) Pharmacokinetic variability and strategy for therapeutic drug monitoring of saquinavir (SQV) in HIV-1 infected individuals.

AIMS: To investigate the pharmacokinetic profile of the protease inhibitor saquinavir (SQV) after multiple doses in HIV-positive patients and to evaluate the possibility of predicting total body exposure of SQV from concentrations determined at single time points. METHODS: Twenty HIV-positive patients on steady-state treatment with SQV (Hard-Gel-Capsule, Invirase(R)) were enrolled in this study. Serial blood samples were obtained during a dosing interval. SQV plasma concentrations were determined by high performance liquid chromatography (h.p.l.c.) and pharmacokinetic parameters were determined by noncompartmental techniques. RESULTS: There was a marked interindividual variability in SQV pharmacokinetic parameters with a 11-fold variability in total systemic exposure to SQV, as expressed by AUC(0,8h) values (range: 268-3009 ng ml-1 h, CV: 69%). The oral clearance shows an interindividual CV of 75%. A strong correlation (r=0.94) was found between SQV plasma concentration at 3 h (C3 h ) and AUC(0,8h). CONCLUSIONS: This study shows that C3 h is a good predictor for total body exposure of SQV and might be useful to predict SQV disposition in HIV-positive patients on steady-state treatment.  (+info)

(6/271) Identification of biased amino acid substitution patterns in human immunodeficiency virus type 1 isolates from patients treated with protease inhibitors.

Human immunodeficiency virus type 1 (HIV-1) amino acid substitutions observed during antiretroviral drug therapy may be caused by drug selection, non-drug-related evolution, or sampling error introduced by the sequencing process. We analyzed HIV-1 sequences from 371 untreated patients and from 178 patients receiving a single protease inhibitor. Amino acid substitution patterns during treatment were compared with inferred substitution patterns arising evolutionarily without treatment. Our results suggest that most treatment-associated amino acid substitutions are caused by selective drug pressure, including substitutions not previously associated with drug resistance.  (+info)

(7/271) Dynamic correlation of apoptosis and immune activation during treatment of HIV infection.

T cells from HIV infected patients undergo spontaneous apoptosis at a faster rate than those from uninfected patients, are abnormally susceptible to activation induced cell death (AICD), and undergo increased apoptosis in response to Fas receptor ligation. These observations have led to the hypothesis CD4 T cell apoptosis may be a mechanism of CD4 T cell depletion and the pathogenesis of AIDS. Successful treatment of HIV infected patients is accompanied by quantitative and qualitative improvements in immune function reflecting at least partial reversibility of the underlying pathogenesis of HIV. In this report we correlate improvements in markers of immune function with a decrease in apoptosis, and changes in its regulation. Therapy with nelfinavir plus saquinavir in combination with two nucleoside analogue inhibitors of reverse transcriptase dramatically reduces plasma viremia and increases CD4 T cell counts. Coincident with these improvements, CD38 and HLA-DR coexpression on both CD4 and CD8 T cells decrease, and CD45RA and CD62L coexpression increase. Furthermore, spontaneous apoptosis decreases in both CD4 and CD8 T cells (CD4 apoptosis 17.4 vs 2.6%, P=0.005; CD8 apoptosis 15.0 vs 1.0%, P<0.001), as does both Fas mediated apoptosis (CD4 apoptosis 19.0 vs 3.5%, P=0.03; CD8 apoptosis 13.7 vs 1.5%, P=0.002) and CD3 induced AICD (CD4 apoptosis 13.7 vs 3.2%, P=0.001; CD8 apoptosis 29 vs 2.2%, P=0.08). Changes in apoptosis are not associated with changes in Fas receptor expression, but are significantly correlated with changes in activation marker profiles. Although this suggests a possible regulatory role for the apoptosis inhibitory protein FLIP, direct assessment did not reveal quantitative differences in FLIP expression between apoptosis resistant PBL's from HIV negative patients, and apoptosis sensitive PBL's from HIV positive patients. These findings support the hypothesis that apoptosis mediates HIV induced CD4 T cell depletion, but indicate the need for further studies into the molecular regulation of HIV induced apoptosis.  (+info)

(8/271) Molecular mechanics analysis of drug-resistant mutants of HIV protease.

Drug-resistant mutants of HIV-1 protease limit the long-term effectiveness of current anti-viral therapy. In order to study drug resistance, the wild-type HIV-1 protease and the mutants R8Q, V32I, M46I, V82A, V82I, V82F, I84V, V32I/I84V and M46I/I84V were modeled with the inhibitors saquinavir and indinavir using the program AMMP. A new screen term was introduced to reproduce more correctly the electron distribution of atoms. The atomic partial charge was represented as a delocalized charge distribution instead of a point charge. The calculated protease-saquinavir interaction energies showed the highly significant correlation of 0.79 with free energy differences derived from the measured inhibition constants for all 10 models. Three different protonation states of indinavir were evaluated. The best indinavir model included a sulfate and gave a correlation coefficient of 0.68 between the calculated interaction energies and free energies from inhibition constants for nine models. The exception was R8Q with indinavir, probably due to differences in the solvation energy. No significant correlation was found using the standard molecular mechanics terms. The incorporation of the new screen correction resulted in better prediction of the effects of inhibitors on resistant protease variants and has potential for selecting more effective inhibitors for resistant virus.  (+info)