Risk factors for the occurrence of sporadic Salmonella enterica serotype enteritidis infections in children in France: a national case-control study. (1/802)

To determine risk factors associated with the occurrence of sporadic cases of Salmonella enteritidis infections among children in France, we conducted a matched case-control study. Cases were identified between 1 March and 30 September 1995. One hundred and five pairs of cases and controls matched for age and place of residence were interviewed. In the 1-5 years age group, illness was associated with the consumption of raw eggs or undercooked egg-containing foods (OR 2.4, 95% CI 1.2-4.8). Storing eggs more than 2 weeks after purchase was associated with Salmonella enteritidis infection (OR 3.8, 95% CI 1.4-10.2), particularly during the summer period (OR 6.0, 95% CI 1.3-26.8). Cases were more likely to report a case of diarrhoea in the household 10-3 days before the onset of symptoms, particularly in the age group < or = 1 year (P = 0.01). This study confirms the link between eggs and the occurrence of sporadic cases of Salmonella enteritidis among children, highlights the potential role of prolonged egg storage and underlines the role of person-to-person transmission in infants.  (+info)

Dietary calcium phosphate stimulates intestinal lactobacilli and decreases the severity of a salmonella infection in rats. (2/802)

We have shown recently that dietary calcium phosphate (CaPi) has a trophic effect on the intestinal microflora and strongly protects against salmonella infection. It was speculated that precipitation by CaPi of intestinal surfactants, such as bile acids and fatty acids, reduced the cytotoxicity of intestinal contents and favored growth of the microflora. Because lactobacilli may have antagonistic activity against pathogens, the main purpose of the present study was to examine whether this CaPi-induced protection coincides with a reinforcement of the endogenous lactobacilli. In vitro, Salmonella enteritidis appeared to be insensitive to bile acids and fatty acids, whereas Lactobacillus acidophilus was killed by physiologically relevant concentrations of these surfactants. Additionally, after adaptation to a purified diet differing only in CaPi concentration (20 and 180 mmol CaHPO4. 2H2O/kg), rats (n = 8) were orally infected with S. enteritidis. Besides reducing the cytotoxicity and the concentration of bile acids and fatty acids of ileal contents and fecal water, CaPi notably changed the composition of ileal bile acids in a less cell-damaging direction. Significantly greater numbers of ileal and fecal lactobacilli were detected in noninfected, CaPi-supplemented rats. As judged by the lower urinary NOx excretion, which is a biomarker of intestinal bacterial translocation, dietary CaPi reduced the invasion of salmonella. Additionally, the colonization resistance was improved considering the reduction of excreted fecal salmonella. In accordance, fewer viable salmonella were detected in ileal contents and on the ileal mucosa in the CaPi group. In conclusion, reducing the intestinal surfactant concentration by dietary CaPi strengthens the endogenous lactobacilli and increases the resistance to salmonella.  (+info)

Phage type conversion in Salmonella enterica serotype Enteritidis caused by the introduction of a resistance plasmid of incompatibility group X (IncX). (3/802)

The plasmid pOG670, a 54 kb, conjugative plasmid that specifies resistance to ampicillin and kanamycin and belonging to the incompatibility group X (IncX), was transferred into 10 isolates of Salmonella enterica serotype Enteritidis belonging to 10 different phage types (PT1, 2, 3, 4, 8, 9, 9b, 10, 11 and 13). Acquisition of the plasmid by these strains did not result in the loss of any resident plasmids but resulted in phage type conversion in 8 of the 10 strains (PT1, 2, 4, 8, 9, 9b, 10 and 11). The observed changes in phage type were found to result from the loss of sensitivity to 3 of the 10 typing phages used (phages 3, 5 and 7). Where the conversion resulted in a change to a defined phage type, both the new and original PTs belonged to the same, previously described, evolutionary lines. Enteritidis PTs 1, 4 and 8, commonly associated with poultry world-wide, were converted to PTs 21, 6 and 13a respectively. The results indicate a different route for phage type conversion Enteritidis from others reported in the literature and, although IncX plasmids are not normally present in PT8 or PT13a, may suggest a possible mechanism/link connecting these phage types.  (+info)

Cloning, sequence analyses, expression, and distribution of ampC-ampR from Morganella morganii clinical isolates. (4/802)

Shotgun cloning experiments with restriction enzyme-digested genomic DNA from Morganella morganii 1, which expresses high levels of cephalosporinase, into the pBKCMV cloning vector gave a recombinant plasmid, pPON-1, which encoded four entire genes: ampC, ampR, an hybF family gene, and orf-1 of unknown function. The deduced AmpC beta-lactamase of pI 7.6 shared structural and functional homologies with AmpC from Citrobacter freundii, Escherichia coli, Yersinia enterocolitica, Enterobacter cloacae, and Serratia marcescens. The overlapping promoter organization of ampC and ampR, although much shorter in M. morganii than in the other enterobacterial species, suggested similar AmpR regulatory properties. The MICs of beta-lactams for E. coli MC4100 (ampC mutant) harboring recombinant plasmid pACYC184 containing either ampC and ampR (pAC-1) or ampC (pAC-2) and induction experiments showed that the ampC gene of M. morganii 1 was repressed in the presence of ampR and was activated when a beta-lactam inducer was added. Moreover, transformation of M. morganii 1 or of E. coli JRG582 (delta ampDE) harboring ampC and ampR with a recombinant plasmid containing ampD from E. cloacae resulted in a decrease in the beta-lactam MICs and an inducible phenotype for M. morganii 1, thus underlining the role of an AmpD-like protein in the regulation of the M. morganii cephalosporinase. Fifteen other M. morganii clinical isolates with phenotypes of either low-level inducible cephalosporinase expression or high-level constitutive cephalosporinase expression harbored the same ampC-ampR organization, with the hybF and orf-1 genes surrounding them; the organization of these genes thus differed from those of ampC-ampR genes in C. freundii and E. cloacae, which are located downstream from the fumarate operon. Finally, an identical AmpC beta-lactamase (DHA-1) was recently identified as being plasmid encoded in Salmonella enteritidis, and this is confirmatory evidence of a chromosomal origin of the plasmid-mediated cephalosporinases.  (+info)

Strain-dependent cytotoxic effects of endotoxin for mouse peritoneal macrophages. (5/802)

The cytotoxic effects of bacterial lipopolysaccharides (LPS) on mouse leukocytes have been examined in vivo and in vitro. Intraperitoneal injection of LPS into C57BL/6 mice greatly reduced the recovery of mononuclear cells; LPS was cytotoxic for macrophages, but had a mitogenic effect on lymphocytes. Similar effects of LPS on peritoneal leukocytes were observed in vitro. When monolayers of adherent peritoneal cells were studied in vitro, cytotoxicity was also observed, suggesting that the effect of LPS on macrophages is direct and does not require participation by lymphocytes. Entirely different results were obtained when peritoneal macrophages from LPS-resistant C3H/HeJ mice were studied. LPS failed to activate lymphocytes and was not cytotoxic for macrophages in vitro or in vivo. The effect of LPS on polymorphonuclear leukocytes appeared to be the same in all mouse stains studied. Lipid A was shown to be the most biologically active portion of the LPS molecule. Whereas polysaccharide-deficient endotoxins extracted from rough mutants of Salmonella typhimurium were cytotoxic for macrophages in vitro, polysaccharides that lacked esterified fatty acids did not exhibit this activity. Since LPS may mediate its effects through affinity for mammalian cell membranes, the cellular unresponsiveness of C3H/H3J mice to LPS may reflect an inability of cells from LPS-resistant strains to interact with LPS at the membrane level.  (+info)

Feed deprivation affects crop environment and modulates Salmonella enteritidis colonization and invasion of leghorn hens. (6/802)

Leghorn hens over 50 weeks of age were assigned to two treatment groups designated as either unmolted controls or molted. A forced molt was induced by a 9-day feed withdrawal, and each hen was challenged orally with 10(5) Salmonella enteritidis organisms on day 4 of feed withdrawal. On days 4 and 9 of molt, the numbers of lactobacilli and the concentrations of lactate, acetate, propionate, and butyrate, and total volatile fatty acids in the crops decreased while crop pH increased significantly (P < 0.05) in the molted hens compared to the controls. S. enteritidis crop and cecal colonization, in addition to spleen and liver invasion, increased significantly (P < 0.05) in the molted hens compared to the controls. The invasive phenotype of Salmonella spp. is complex and requires several virulence genes which are regulated by the transcriptional activator HilA. Samples of the crop contents from the molted and unmolted birds were pooled separately, centrifuged, and filter sterilized. The sterile crop contents were then used to measure the expression of hilA. By using a lacZY transcriptional fusion to the hilA gene in S. enteritidis, we found that hilA expression was 1.6- to 2.1-fold higher in the crop contents from molted birds than in those from control birds in vitro. The results of the study suggest that the changes in the microenvironment of the crop caused by feed deprivation are important regulators of S. enteritidis survival and influence the susceptibility of molted hens to S. enteritidis infections. Furthermore, our in vitro results on the expression of hilA suggest that the change in crop environment during feed withdrawal has the potential to significantly affect virulence by increasing the expression of genes necessary for intestinal invasion.  (+info)

Clinical and veterinary isolates of Salmonella enterica serovar enteritidis defective in lipopolysaccharide O-chain polymerization. (7/802)

Twelve human and chicken isolates of Salmonella enterica serovar Enteritidis belonging to phage types 4, 8, 13a, and 23 were characterized for variability in lipopolysaccharide (LPS) composition. Isolates were differentiated into two groups, i.e., those that lacked immunoreactive O-chain, termed rough isolates, and those that had immunoreactive O-chain, termed smooth isolates. Isolates within these groups could be further differentiated by LPS compositional differences as detected by gel electrophoresis and gas liquid chromatography of samples extracted with water, which yielded significantly more LPS in comparison to phenol-chloroform extraction. The rough isolates were of two types, the O-antigen synthesis mutants and the O-antigen polymerization (wzy) mutants. Smooth isolates were also of two types, one producing low-molecular-weight (LMW) LPS and the other producing high-molecular-weight (HMW) LPS. To determine the genetic basis for the O-chain variability of the smooth isolates, we analyzed the effects of a null mutation in the O-chain length determinant gene, wzz (cld) of serovar Typhimurium. This mutation results in a loss of HMW LPS; however, the LMW LPS of this mutant was longer and more glucosylated than that from clinical isolates of serovar Enteritidis. Cluster analysis of these data and of those from two previously characterized isogenic strains of serovar Enteritidis that had different virulence attributes indicated that glucosylation of HMW LPS (via oafR function) is variable and results in two types of HMW structures, one that is highly glucosylated and one that is minimally glucosylated. These results strongly indicate that naturally occurring variability in wzy, wzz, and oafR function can be used to subtype isolates of serovar Enteritidis during epidemiological investigations.  (+info)

Comparative physical and genetic maps of the virulence plasmids of Salmonella enterica serovars typhimurium, enteritidis, choleraesuis, and dublin. (8/802)

Using fragment profiling, PCR, and Southern hybridization, we found that Salmonella enterica serovar Choleraesuis harbored virulence plasmids of various sizes, whereas serovars Typhimurium, Enteritidis, and Dublin carried a plasmid of a unique size. Also, the virulence plasmid of Typhimurium contained genes in the same order detected in the other three plasmids, all of which contained deletions.  (+info)